
Integrating Ethics into Introductory Programming Classes
Casey Fiesler

casey.fiesler@colorado.edu
University of Colorado Boulder

Mikhaila Friske
mikhaila.friske@colorado.edu
University of Colorado Boulder

Natalie Garrett
natalie.garrett@colorado.edu
University of Colorado Boulder

Felix Muzny
f.muzny@northeastern.edu
Northeastern University

Jessie J. Smith
Jessie.Smith-1@colorado.edu
University of Colorado Boulder

Jason Zietz
jason.zietz@colorado.edu

University of Colorado Boulder

ABSTRACT
Increasing attention to the role of ethical consideration in com-
puting has led to calls for greater integration of this critical topic
into technical classes rather than siloed in standalone computing
ethics classes. The motivation for such integration is not only to
support in-situ learning, but also to emphasize to students that
ethical consideration is inherently part of the technical practice of
computing. We propose that the logical place to begin emphasiz-
ing ethics is on day one of computing education: in introductory
programming classes. This paper presents one approach to ethics
integration into such classes: assignments that teach basic program-
ming concepts (e.g., conditionals or iteration) but are contextualized
with real-world ethical dilemmas or concepts. We report on experi-
ences with this approach in multiple introductory programming
courses, including details about select assignments, insights from
instructors and teaching assistants, and results from surveys of a
subset of students who took these courses. Based on these experi-
ences we provide preliminary plans for future work, along with a
roadmap for instructors to emulate our approach and suggestions
for overcoming challenges they might face.

CCS CONCEPTS
• Social and professional topics→ Model curricula.

KEYWORDS
ethics, introductory programming, CS1, social impact, assignments,
university, undergraduate, content

ACM Reference Format:
Casey Fiesler, Mikhaila Friske, Natalie Garrett, Felix Muzny, Jessie J. Smith,
and Jason Zietz. 2021. Integrating Ethics into Introductory Programming
Classes. In Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education (SIGCSE ’21), March 13–20, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3408877.3432510

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’21, March 13–20, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8062-1/21/03. . . $15.00
https://doi.org/10.1145/3408877.3432510

1 INTRODUCTION
If, as we claim, social and ethical concerns are an
integral part of designing computer systems, then
why are they frequently absent in computer science
education?

This question, posed in a 1994Communications of the ACM article
[9], is in many ways as relevant now as it was 25 years ago. Though
interest and coverage of computing ethics in higher education is
increasing [8, 29], so is public and academic discourse around harms
caused by technology and responsibility held by technologists [10,
31]. Therefore, it is important that we consider not just whether
social and ethical concerns are present in CS education, but how.

In the United States, the Accreditation Board for Engineering
and Technology (ABET) altered criteria for computer science pro-
grams in the mid-2000s to include providing students with “an
understanding of professional, ethical, legal, security and social
issues and responsibilities” and “an ability to analyze the local
and global impact of computing on individuals, organizations, and
society” [14]. However, there are not clear guidelines for how to
accomplish this, and different programs handle it differently. One
analysis showed that the most common strategy for a sample of
ABET-accredited CS programs was a required junior or senior level
standalone ethics or professionalism class, either taught by the
department or by a different department such as Philosophy [14].

Standalone ethics classes are important pedagogically and have
been examined in prior work [8], which also suggests the benefits of
standalone classes paired with curricular integration [19]. However,
we see three potential flaws to standalone ethics classes alone as a
solution, particularly those taught near the end of a degree program:
(1) many students take computing courses, not just majors, and
therefore many students learning computing might not have any
exposure to ethics content; (2) teaching ethics as divorced from
technical classes fails to emphasize that ethical consideration should
be an actual part of that technical practice; and (3) students form
values associated with their profession along the way, so if they
spend 2 to 3 years learning computing without hearing about ethics,
it may be too late by the time they do (similar to arguments around
creating good code documentation habits from the start [4]).

We piloted an intervention to integrate ethics into introductory
programming classes as a possible solution that tackles all three of
these shortcomings. In addition to the benefits of ethics integration
into technical classes generally, a solution for which we are seeing
an increasing number of calls to action [8, 10, 11, 23, 24, 27, 30],
targeting introductory programming classes has the additional
benefits of reaching a large number of students who may not go on

https://doi.org/10.1145/3408877.3432510
https://doi.org/10.1145/3408877.3432510

to take more computing classes, as well as emphasizing to students
that ethics is part of computer science from the very beginning.

This paper describes a pilot program that replaced existing as-
signments in these classes with assignments contextualized with
ethical dilemmas and concepts. We report on the benefits and chal-
lenges of this approach based on instructor and teaching assistant
observations and a post-class student survey. Based on these expe-
riences we provide suggestions for emulating our approach and for
overcoming challenges instructors might face.

2 RELATEDWORK
In a letter to the editor of Communications of the ACM in 1996, a CS
professor argued that ethical consideration is “not doing computer
science” and that it was “difficult to imagine a computer scientist
teaching these things” [18]. This opinion came in response to an
NSF-funded report that recommended that in addition to standalone
classes, ethics and social impact should be integrated into core CS
classes [19]. Resistance to this kind of integration might come from
that idea that the material is not appropriate for the CS classroom,
from an instructor not knowing what to teach or how to teach it
[8, 24], or from concerns about time being at a premium when there
is so much technical content to cover [3]. However, not addressing
potential ethical issues as they arise in-situ during computational
learning risks marginalizing ethics or reinforcing the idea that it
is for someone else to worry about rather than a necessary part of
the daily practice of a technologist [8].

However, though integration is still not standard practice (with
standalone classes more common [14]) even for topics for which
ethics is highly relevant such as machine learning [10, 24], there are
a number of strong examples. For example, the Embedded EthiCS
program embeds philosophy graduate students and postdocs into
courses throughout the computer science curriculum, modifying
each course to include relevant ethics content [11]. Though this is a
resource-intensive solution, it has been effective in overcoming the
shortcomings of standalone classes and addressing one of the sig-
nificant challenges of integration, reluctance of instructors to teach
the material themselves [11]. Others have integrated ethics content
into specific classes, including human-computer interaction [30],
data science [24, 27], and even lower-level programming classes [3].
Overall, evaluations and experiences of these interventions suggest
that they benefit students, though they often require significant
course overhauls. For example, a CS2 intervention included new
types of assignments with written reflections [3].

Another benefit of incorporating ethical thinking and specula-
tion into programming classes is that ethical dilemmas provide real-
world context. We know from prior work that incorporating context
and concrete application domains can increase success rates and
retention in introductory computing courses [13, 20]. Prior work
has also shown that including socially relevant examples and an
emphasis on the social impact of computing has a positive impact
on participation and retention in computing for people from under-
represented groups such as women [16, 26]. Additionally, ethical
considerations permeate topics such as bias, workforce diversity,
and accessibility, all important topics for cultivating culturally com-
petent students who are able to think inclusively [17, 33].

Table 1: Overview of courses for integration, alongwith eval-
uation method and analysis.

Course Semester(s) Integration Survey? Quant?
CS-A Fall 2019 2 assignments No No
CS-B Spring 2020 2 assignments Yes Yes
INFO-A Fall 2019/Spring 2020 2 assignments Yes No
INFO-B Summer 2020 throughout Yes No

Though in general, contextualized assignments are not uncom-
mon in introductory programming classes, ethics specifically still
appears to be rare. A 2006 survey study showed that “ethics” was
considered by CS1 instructors to be one of the least “important”
topics to cover [25], and a 2019 analysis of CS1 syllabi showed
no mention of ethics among learning outcomes for students [1].
However, towards a goal of emphasizing to students that ethics
is essential to the role of a computing professional, introductory
programming is the perfect place to begin ethics integration. Our
intervention focused on replacing existing assignments with new
assignments contextualized with ethical dilemmas and concepts.

3 COURSE DESCRIPTIONS
In the 2019/2020 academic year, we piloted our approach in three
different introductory programming courses at University of Col-
orado Boulder, a large state university in the United States. Table
1 provides an overview of these courses, along with notes about
evaluation methods (see Section 5).

CS-A. Primarily serving non-CS-majors in STEM and engineer-
ing as well as students who haven’t yet declared a major, this course
is taught in Python and had 170 students enrolled in Fall 2019. We
replaced 2 of 6 assignments with the contextualized assignments
described below. In addition to specific discussions related to these
assignments in recitation sections, there was one guest lecture from
an ethics expert partway through the semester and one lecture on
AI bias from the instructor near the end of the course.

CS-B. Primarily serving computer science majors and engineer-
ing majors, this course is taught in C++ and had roughly 700 stu-
dents enrolled in Spring 2020. We replaced 2 of 8 assignments, and
following each assignment a guest speaker gave a 15 to 30 minute
lecture and led discussion of the relevant topic.

INFO-A. Serving information science majors as well as non-
majors (primarily from Strategic Communication, Communication,
and Journalism), this class is taught in Python. 195 students were
enrolled in Fall 2019 and 214 students were enrolled in Spring 2020.
We replaced 2 of 8 assignments, and a guest speaker gave a 15 to
30 minute lecture following the assignments.

INFO-B. This course is the same as INFO-A, but was taught
in Summer 2020 with 17 students. It was also redesigned, where
based on the success of these previous classes, ethics was integrated
throughout the entire semester. Five “case studies” (modules) each
touched on specific ethics concepts as they related to computing,
technology, and coding. Each module included both class discussion
and a coding assignment or activity with a written reflection.

Though this paper is focused on our individual assignment-based
intervention, we include some information about INFO-B in order

to reflect on and make suggestions for even more robust ethics
integration. In describing evaluations (such as observation or stu-
dent comments) we specifically note when we are referring only to
INFO-B in order to separate out any measures of success. Also note
that though INFO-B included graded assignments (e.g., reflections)
related to ethics, the other courses with our primary intervention
did not, largely for reasons discussed in Section 6.3.

4 INTERVENTION
Previous ethics interventions in programming classes (for example,
CS2 and data structures [3]) typically have involved new material
and types of assignments (e.g., written reflections). In considering
options for integrating ethics into existing introductory program-
ming courses, we ultimately decided to start with the approach
that would result in the least amount of work for the instructors of
those courses, who are often overburdened with very large classes
and limited time for course development.

Ethics experts unaffiliated with the classes took existing assign-
ments and altered them so that they taught the same technical
content, but were re-contextualized to inherently bring up ethi-
cal concepts and current ethical dilemmas in tech. Instructors and
teaching assistants then further refined them to ensure that they
were in line with class goals and learning objectives, and formatted
appropriately. They also created grading criteria.

For the three courses where we piloted this approach (CS-A,
CS-B, and INFO-A), we replaced two assignments. INFO-B, taught
in the summer following this intervention, experimented with ad-
ditional assignments as well as further ethics integration with class
discussion and reflection exercises.

Wewill describe in detail the two assignments from the first three
courses as our primary intervention.1 There were two versions of
each assignment: one in Python and one in C++, depending on the
language used in the class.

4.1 Personalized Ads
This assignment covered conditionals and booleans, with learn-
ing objectives that included implementing one-way, two-way, and
multi-way decisions using if/else statements and understanding
boolean expressions and data types. The following context was
provided for the assignment:

Your job is to write a program that decides on an
ad to serve to a person on a social media platform.
The personalized ad program will prompt the user for
information and then return text that describes ads
based on their inputs.

The assignment then walks the student through writing func-
tions that are increasingly complex–both with respect to the type
of decision and conditional structure, and to the type of personal-
ization and data-based inference involved. Here are simple expla-
nations for each:

(1) Advertise dog food to a social media user if they own a dog.
(2) Research has shown that algorithms can determine whether

a social media user is likely to be an extrovert or an introvert

1Exact assignments and supplementary materials are available at
www.internetruleslab.com/responsible-computing

based on the number of friends they have on the platform.
Research has also shown that extroverts are more likely to
be dog people and introverts are more likely to be cat people,
and that people aremore likely to click on ads for any product
that remind them of their pet. Based on the number of friends
that the user has, serve an ad that includes a dog or a cat.

(3) The platform has data about likely income averages based on
zipcode and how incomes vary based on life stage (e.g., col-
lege students have less disposable income no matter where
they live). Serve ads for expensive versus inexpensive prod-
ucts based on where the user lives and how old they are.

This assignment was designed to emphasize to students: (1) how
their datamight be used for advertising purposes; (2) how inferences
about someone can be drawn from data, and therefore information
can be known about someone beyond what they explicitly state;
and (3) how what is known about someone can influence not only
what is advertised to them, but how it is advertised. In discussion
following the assignment (either in recitation sections or in lec-
ture), the instructor or a guest speaker discussed two well-known
examples: if Target’s algorithms can identify whether a customer is
pregnant [32]; and the Cambridge Analytica scandal [28]. The in-
trovert/extrovert function specifically tees up a conversation about
Cambridge Analytica, where the nuance is that based on Facebook
data, themanipulationwas not in determiningwhat to advertise to a
user, but rather that inferred personality traits (such as introversion
versus extroversion) suggested how to advertise.

4.2 College Admissions Algorithms
This assignment covered lists and file input/output, with learning
objectives related to iterating through a list and reading and writing
data from and to files. The following context was provided:

As you know, the college admissions process involves
a lot of types of data from prospective students to
make decisions. With the number of applicants in-
creasing, colleges may begin relying on algorithms to
select which applications should receive more inten-
sive human review. An algorithm could use quanti-
tative data–such as GPA and SAT score–to provide
initial recommendations. In fact, there is more data
available than ever. Many colleges even track data
about prospective student engagement - e.g., whether
they open emails, visit the college website, engage
on social media, etc. [2] This creates a “demonstrated
interest” value. Based on a recent survey of college ad-
missions officers [15], we know some of the weights
that humans tend to give to these different types of
data. Your task will be to create a program that it-
erates through a list of data points and provides a
recommendation for which prospective students are
likely to be the best candidates for admission.

For the assignments, students were provided with a file of fic-
tional prospective student data points organized in lists that in-
cluded GPA, SAT score, a score of high school curriculum difficulty,
and a “demonstrated interest” score. The assignment asked students
to provide overall scores for each prospective student based on pro-
vided weights and then return a list of students recommended by

the algorithm. The rest of the assignment walked them through
additional transformations that explored how the algorithm might
systematically miss certain kinds of edge cases. For example, what
if a student has a 0 for demonstrated interest because they don’t use
social media or have access to a home computer? What if a student
has a very high GPA but their SAT score is low enough to bring their
score down; could this mean that they had a single bad test taking
day? Students then wrote additional algorithms that checked for
outliers in the data. Discussion following this assignment focused
on algorithmic decision-making and representations of people in
data, bias and fairness, human judgment in algorithmic decisions,
and the appropriate role of algorithms in decision-making.

5 STUDENT SURVEYS
In Spring and Summer 2020 we conducted surveys at the end of
class in CS-B, INFO-A, and INFO-B (CS-A was only taught in Fall),
with approval from our university Institutional Review Board. We
did not provide any compensation or extra credit, though did give
students time in class to take the survey, which was administered
by a researcher who was not an instructor or TA for the course.
We suspect that partly due to disruptions from COVID-19, the
response rate was quite low in Spring: 135 out of 700 students
for CS-B and 7 out of 214 for INFO-A. For Summer’s INFO-B, 11
out of 17 students responded. Because sample sizes were so low
for the other classes, the quantitative data we report is only from
the 135 students who took CS-B in Spring 2020. The qualitative
findings reflect responses from all courses, though we separate out
responses that come from the Summer course where the ethics
integration was more robust, in order to clarify the impact of the
initial assignment-based intervention. Table 1 provides an overview
of these classes and these evaluations and analyses.

We asked optional demographic questions so we could appro-
priately describe the student population. For students in CS-B who
answered these questions, the mean age was 19; 59 men, 43 women,
1 non-binary individual, and 1 who preferred not to disclose; 51
freshmen, 37 sophomores, 14 juniors, and 2 seniors; students were
majority white (66%); and 40% were computer science and computer
engineering majors; 33% other engineering majors, and the rest
undecided or other majors, mostly STEM.

For the quantitative results described for CS-B in Table 2 and
Figure 1, we asked questions that directly compared learning and
engagement for our new assignments to the other assignments that
were not contextualized with ethical issues. We operationalized en-
gagement by how "interesting" an assignment was. These included
the following quantitative questions:

(1) How much did you learn from the [personalized ads or ad-
missions algorithm] assignment compared to your other
assignments? (“less,” “about the same,” or “more”)

(2) How interesting was the [personalized ads or admissions
algorithm] assignment compared to your other assignments?
(“less,” “about the same,” or “more”)

(3) In general, how interested would you be to see more assign-
ments that bring up ethical issues in your future program-
ming classes? (on a 5-point scale of “very uninterested” to
“very interested”)

Table 2: Responses to Assignment-Based Questions

Assignment Less About the Same More
Ads - Learning (Q1) 12% 75% 13%

Admissions - Learning (Q1) 10% 57% 33%
Ads - Engagement (Q2) 20% 57% 23%

Admissions - Engagement (Q2) 13% 51% 36%

With respect to comparing the ethics-based assignments to other
assignments, the results were mixed but trend positive, suggesting
that the assignments had value and, importantly, did not take away
from the class. Very few students said they learned less from these
assignments, and many said that they were more interesting and
that they learned more (see Table 2).

The third question gives another measurement of engagement,
by asking how interested students would be in this kind of content
in their future programming classes; we found that the majority
of students would be interested in such content (see Figure 1). 51%
said that they would be somewhat or very interested, and only 15%
said that they would be somewhat or very uninterested.

Figure 1: Chart of responses, in percentages, to level of in-
terest in ethics-based assignments in more classes.

In analyzing free response answers to one open question (“De-
scribe an ethics concept that came up in class this semester.”), we
found about equal mention of the issues from our intervention–e.g.,
biased algorithms, personalization, and privacy. Unexpectedly, we
also noted that a number of students equated ethics with plagiarism,
which was not part of our intervention. However, this suggests pla-
giarism might be an interesting topic for a more robust discussion
around ethics that could tie into broader ethical issues than the
honor code, such as real-world practice and professionalism.

Despite the fact that overall the responses suggested that stu-
dents picked up on ethical concepts due to our intervention, it was
still clear that not every student “got it.” For example, one student
claimed that for the admissions algorithm assignment, there were
no ethical implications for the programmer because they were just
doing what they were told. This response suggested ways that we
can do a better job in framing very basic concepts like power, bias,
and especially responsibility.

In INFO-B, the small, summer class, where ethical concepts were
incorporated into every assignment, we asked free-response ques-
tions about both learning (“Which assignment in this class do you
think most helped you learn a technical concept? What did you
learn?” and “Which assignment in this class do you think most
helped you learn an ethical or social concept?What did you learn?”)
and engagement (“Which assignment in this class was most inter-
esting to you and why?”). There was the most engagement, in terms
of both interest and ethical concepts, with an assignment about au-
tonomous vehicles. For example, the students wrote about learning
how there are often no “right” answers and how important ethical
audits are for AI. Additionally, when describing technical learn-
ing some students also brought up ethical concepts–for example,
“This assignment was very helpful in learning how to parse data,
and I learned that code does not have empathy.” Finally, as also
noted with our own observations detailed next, students mentioned
how interesting they found assignments that felt “real” and had
real-world implications.

6 INSIGHTS FROM INSTRUCTORS
The authors of this paper include three instructors and two teaching
assistants from these courses, as well as the guest speakers/ethics
experts who contributed to the content and discussion. Based on
our collective experiences, we lay out our observations of benefits
to the students (also based on survey responses described above).

6.1 Observed Benefits for Students
Based on in-class discussion, the idea that ethical issues are impor-
tant in computer science right now is not new for many students;
sometimes they even bring up ethical issues unprompted. With
just a small push to include the content in class, it actually does
not require much work to help them make the leap from “ethics
matters in tech” to “I should be thinking about this when writing
code.” Though more formal empirical research is needed to deter-
mine actual impacts in terms of learning and attitude shifts, our
observation of students in class is that, though not all were deeply
engaged, those that were engaged were very engaged.

Another benefit of assignments contextualized with real-world
ethical dilemmas is that, as we know from prior work and saw
reinforced here, students enjoy real-world contexts for assignments
in general.We saw that students were especially engagedwhen they
were thinking about tangible ethical issues where they could see the
direct application, such as bias in algorithms. Students expressed
in class that they appreciated that they could apply this content to
current events, the tech they use every day, and their personal data.

We also saw that students enjoyed the creative components; for
example, in the personalized ads assignment, they had the free-
dom to write their own text for the ads, and often did more work
there than expected. In general, even assignments for beginning
programming concepts typically have some kind of context; the
ones we chose were engaging because they covered topics that the
students were already familiar with and knew were important. We
of course cannot entirely disentangle here the effect of real-world
context versus ethic specifically, though this would be an important
question for future work.

6.2 Observed Challenges for Students
The most significant barrier we noticed to student engagement was
that when students struggle with the technical material, they seem
less engaged in the ethical components. Instead, they are focused
on trying to understand the part they are being graded on. We
suspect this is why engagement with ethical concepts seemed to
be the lowest in the Fall and Spring iterations of INFO-A, which
included a large number of students from non-technical majors,
students who in general struggle the most with class content. They
also showed less creativity in their assignments when given the
opportunity, possibly because they were more worried about right
answers and/or were spending more time on the technical aspects.

6.3 Challenges for Instructors
One goal with this intervention was to develop an approach that
would be very little work for the instructors–either by the develop-
ment of shared resources (such as the assignments we have created)
or by working with outside experts to develop new assignments.
We chose to replace assignments, as this typically does not require
finding extra time in class, changing grading schemes, or adding a
lot of new content.

Although one design constraint of these assignments was to
minimize the amount of additional work for the instructor, translat-
ing assignments between classrooms presented challenges such as
addressing specific learning goals or standardizing formatting. An
assignment created for one class cannot necessarily be used “out of
the box” in another class, particularly if the new class covers less
material than the original class. We came to realize that the process
would be much smoother if the instructors themselves were leading
the adaptation, with assistance from ethics experts, if necessary.
This is also a task that might be well-suited for teaching assistants.

Another challenge is that large classes often rely on auto-grading,
which makes it difficult to (1) increase student agency (e.g., making
outside-the-box decisions or being creative); and (2) evaluate ethical
learning. Because of resource constraints and/or consistency in
grading, it can be difficult to add hand-graded content such as open-
ended questions about ethical concepts. For our interventions, we
simply included this material without grading it—but it is possible
that the students would be more engaged or more convinced of the
importance of the material if it were “on the test.”

Finally, adding ethics-related content to class discussion requires
training for instructors and teaching assistants, or guest lectures
from experts. For our intervention, we largely relied on the latter,
but this is not necessarily sustainable and can be improved upon.

7 DISCUSSION AND RECOMMENDATIONS
Based on our experiences with these interventions, here we make
an argument for why this approach would be beneficial to others,
and then suggest methods of implementation and possible solutions
to the challenges we described above.

One concern for adding this content to classes might be that
it would take away from the important technical content of the
class. However, based on survey results and instructor observation,
we have no reason to think that our intervention detracted from
technical learning. In fact, one student, who had taken a different
coding course before the INFO-B course, told the instructor that they

learned more from the class than in their previous one specifically
because the ethics-related assignments were more interesting.

We saw that for many students this intervention increased en-
gagement with assignments in addition to exposure to ethical con-
cepts. We also already know from prior work that students are more
likely to engage with computing if it is connected to the real world
[13, 20] and that an emphasis on social impact of technology can
help spark and sustain interest among underrepresented groups
in particular [16]. Moreover, inclusion of ethics-related content
around topics such as bias and diversity is a step towards increas-
ing cultural competency among computing students, an important
goal for both student retention and creation of a talent pool with a
better understanding of equity and inclusion [33].

Finally, the majority of students in our survey sample are inter-
ested in seeing these types of assignments in their future program-
ming classes. Our observations from this pilot intervention shows
that there could, as suggested by a number of others [11, 23, 24, 30],
be benefits for integrating ethics across the entire curriculum, and
that replacing programming assignments is an effective strategy.

Ideally this paper has given others a sense for both the “why”
and the “how” of our approach. One suggestion we have is to–as
we did–start small. Replace one assignment to start, and the next
semester, try another. Our experience with a complete overhaul in
the Summer class was smoother due to having built up to that point,
particularly because the INFO-B instructor was previously a TA for
INFO-A. Finally, to provide guidance for two specific scenarios that
might be challenging:

If you teach intro programming but are concerned that you don’t
know enough about ethics to do this on your own: Our assignments are
available (see footnote 1), and others are creating them as well–such
as Computer Science Professor Evan Peck’s “Ethical Engine” CS1
programming assignment that incorporates the trolley problem (a
classic moral philosophy hypothetical) into coding conditionals and
another about bias in hiring algorithms [7, 21, 22]. So even if you do
not have your own ethics experts to help, you can start with these
kinds of open resources, which are becoming increasingly common
[7, 23]. Note, however, that coming up with your own relevant
context might not be as difficult as you think. There is a tech ethics
scandal in the news nearly every week, and a number of available
resources, including the syllabi for many standalone computing
ethics classes that already exist [8]. You also might consider asking
others for help–even beyond your own department.

If you know about ethics and want to help intro programming
instructors: Replacing assignments with new ones is a great way
to not be a huge burden on the instructors for the reasons we’ve
already noted. Ask for copies of existing assignments and think
about how the context could change. Even better, work directly
with them if they can spare the bandwidth; instructors are often
looking for ideas for new assignments.

Finally, based on the challenges we identified above, we will be
making adjustments in the future ourselves, and have the following
recommendations to help mitigate some of these problems:

(1) Be sure that when ethical concepts are integrated into assign-
ments that it does not raise the difficulty of the assignments.
Also consider starting with assignments that students do not
traditionally struggle with; the less they struggle with the

assignment, the more likely they are to be able to engage
with the additional ideas.

(2) Particularly for technical topics that students struggle with,
try introducing the ethical dilemma first through lecture or
class discussion so that they have some time to grapple with
it before having to worry about the code.

(3) Allow students to go over their solutions together so that
they have an opportunity to discuss and reflect on their
choices. This will both help them grapple with the ethical
concepts and reinforce the technical material.

(4) Possibilities for evaluation include interview grading, which
has the added benefit of providing personalized attention
to students even at scale [12], and/or peer evaluation which
has additional pedagogical benefits [5]. Short answers are
also effective for a short reflection on design choices, and if
there are problems with scale, pass/fail grading might be a
solution.

(5) A more resource-intensive solution is to have one teaching
assistant whose role is dedicated to helping with ethics con-
tent. This might include speaking in recitations and lecture,
training other TAs, short answer grading, and/or helping
to adjust the assignments. This option would be similar to
Harvard’s model of embedding Philosophy postdocs into CS
classes [11].

(6) Additionally, prioritizing training for all TAs on the ethics
content could result in learning benefits for the TAs as well
as the students taking the class.

As we build out more assignments, our goal is to replace nearly
all assignments in these large introductory programming classes
with ethically contextualized content. Though we will take lessons
from INFO-B (and also continue to teach it as fully ethics-integrated
as a small summer class), we also recognize the constraints that
come with large classes with auto-graded assignments and plan
to design with those in mind, and to share broadly so that they
can be used by others. We will also be conducting formal, survey-
based evaluation that targets technical learning, ethical learning,
and student engagement.

Finally, another advantage of introductory programming as a
site for ethical context is that it can likely be easily adapted for K-12
computer science as well, which is appropriate because not only
are children learning to code quite early, but they should also learn
to be critical users of technology [6].

8 CONCLUSION
Nearly 25 years ago an NSF working group suggested integration
of an ethics and social impact “tenth strand” throughout computer
science core courses [19]. In recent years, large-scale projects like
EmbeddedEthiCS [11] and the Responsible Computer Science Chal-
lenge [23], as well as individual models such as ethics integration
into HCI classes [30] or machine learning [24], have shown more
movement towards this goal. As universities grapple with how
best to handle the increasing demand for computer scientists with
expertise in ethically wrought fields such as artificial intelligence
[10], our hope is that touching on ethics early and often, starting
with introductory programming, can have a profound impact on
the perception of ethics as part of “doing computer science.”

9 ACKNOWLEDGEMENTS
This work was supported by Omidyar Network, Mozilla, Schmidt
Futures and Craig Newmark Philanthropies as part of the Responsi-
ble Computer Science Challenge. Our thanks to Ioana Fleming and
Murray Cox for allowing this intervention in their classes, as well
as to all the teaching assistants who helped with implementation,
with special thanks to Janet Ruppert and Tetsumichi Umada, and
to Blakeley Payne for her valuable feedback.

REFERENCES
[1] Brett A. Becker and Thomas Fitzpatrick. 2019. What Do CS1 Syllabi Reveal About

Our Expectations of Introductory Programming Students?. In Proceedings of the
ACM SIGCSE Technical Symposium on Computer Science Education. Minneapolis,
MN, 1011–1017.

[2] Douglas Belkin. 2019. Colleges Mine Data on Their Applicants. https://www.
wsj.com/articles/the-data-colleges-collect-on-applicants-11548507602

[3] Mary Elaine Califf and Mary Goodwin. 2005. Effective incorporation of ethics
into courses that focus on programming. ACM SIGCSE Bulletin 37, 1 (2005),
347–351.

[4] Andy Cockbum and Neuille Churcher. 1997. Towards literate tools for novice
programmers. ACM International Conference Proceeding Series Part F1293 (1997),
107–116.

[5] Maria de Marsico, Filippo Sciarrone, Andrea Sterbini, and Marco Temperini. 2017.
Supporting mediated peer-evaluation to grade answers to open-ended questions.
Eurasia Journal of Mathematics, Science and Technology Education 13, 4 (2017),
1085–1106.

[6] Daniella Dipaola, Blakeley H. Payne, and Cynthia Breazeal. 2020. Decoding design
agendas: An ethical design activity for middle school students. Proceedings of the
ACM IDC Interaction Design and Children Conference (2020), 1–10.

[7] Stacy A. Doore, Casey Fiesler, Michael S. Kirkpatrick, Evan Peck, and Mehran
Sahami. 2020. Assignments that blend ethics and technology. Proceedings of
the ACM SIGCSE Technical Symposium on Computer Science Education, Extended
Abstracts (2020), 475–476.

[8] Casey Fiesler, Natalie Garrett, and Nathan Beard. 2020. What Do We Teach
When We Teach Tech Ethics? A Syllabi Analysis. Proceedings of the ACM SIGCSE
Technical Symposium on Computer Science Education (2020).

[9] Batya Friedman and Peter H. Kahn. 1994. Educating computer scientists: Linking
the Social and the Technical. Commun. ACM 37, 1 (1994), 64–70.

[10] Natalie Garrett, Nathan Beard, and Casey Fiesler. 2020. More Than "If Time
Allows": The Role of Ethics in AI Education. Proceedings of the AAAI AIES
Conference on AI, Ethics and Society (2020), 272–278.

[11] Barbara J. Grosz, David Gray Grant, Kate Vredenburgh, Jeff Behrends, Lily Hu,
Alison Simmons, and Jim Waldo. 2019. Embedded EthiCS: Integrating Ethics
Broadly Across Computer Science Education. Commun. ACM 62, 8 (2019), 54–61.

[12] Dirk Grunwald, Elizabeth Boese, Rhonda Hoenigman, Andy Sayler, and Judith
Stafford. 2015. Personalized attention @ scale. Talk isn’t cheap, but it’s effec-
tive. Proceedings of the ACM SIGCSE Technical Symposium on Computer Science
Education (2015), 610–615.

[13] Mark Guzdial. 2009. Being Fluent with Information Technology. Commun. ACM
52, 5 (2009), 31–33.

[14] Rick Homkes, South Washington Street, and Robert A Strikwerda. 2009. Meeting
the ABET Program Outcome for Issues and Responsibilities : An Evaluation of
CS , IS , and IT Programs. Proceedings of the ACM SIGITE Special Interest Group
on Information Technology Education (2009), 133–137.

[15] Scott Jaschik. [n.d.]. New Data on Admissions: Criteria That Matter, Early
Decision and More. https://www.insidehighered.com/admissions/article/2018/
11/12/new-data-admissions-including-application-trends-early-decision-and

[16] Nazish Zaman Khan and Andrew Luxton-Reilly. 2016. Is computing for so-
cial good the solution to closing the gender gap in computer science? ACM
International Conference Proceeding Series 01-05-Febr (2016), 0–4.

[17] Stephanie Ludi, Matt Huenerfauth, Vicki Hanson, Nidhi Rajendra Palan, and
Paula Garcia. 2018. Teaching Inclusive Thinking to Undergraduate Students in
Computing Programs. In Proceedings of the ACM SIGCSE Technical Symposium
on Computer Science Education. Baltimore, MD, 717–722.

[18] CDianneMartin. 1997. The Case for Integrating Ethical and Social Impact into the
Computer Science Curriculum. ITCSE Working Group Reports and Supplemental
Proceedings (1997), 114–120.

[19] C. Dianne Martin, Chuck Huff, Donald Gotterbarn, and Keith Miller. 1996. Im-
plementing a Tenth Strand in the CS Curriculum. Commun. ACM 39, 12 (1996),
75–84.

[20] Hilarie Nickerson, Catharine Brand, and Alexander Repenning. 2015. Ground-
ing computational thinking skill acquisition through contextualized instruction.
Proceedings of the ACM ICER Conference on International Computing Education
Research (2015), 207–216.

[21] Evan Peck. 2017. The Ethical Engine: Integrating Ethical Design into Intro Com-
puter Science. https://medium.com/bucknell-hci/the-ethical-engine-integrating-
ethical-design-into-intro-to-computer-science-4f9874e756af

[22] Evan Peck. 2018. Ethical Design in CS 1: Building Hiring Algorithms in 1
Hour. https://medium.com/bucknell-hci/ethical-design-in-cs-1-building-hiring-
algorithms-in-1-hour-41d8c913859f

[23] Kathy Pham. 2020. Ethics and Social Responsibility in Computer Science Curric-
ula. Proceedings of the ACM SIGCSE Technical Symposium on Computer Science
Education, Extended Abstracts (2020).

[24] Jeffrey Saltz, Michael Skirpan, Casey Fiesler, Micha Gorelick, Tom Yeh, Robert
Heckman, Neil Dewar, and Nathan Beard. 2019. Integrating Ethics within
Machine-learning Courses. ACM Transactions on Computing Education 19, 4
(2019), 1–26.

[25] Carsten Schulte and Jens Bennedsen. 2006. What Do Teachers Teach in Intro-
ductory Programming?. In Proceedings of the ACM Conference on International
Computing Education Research (ICER). 17–28.

[26] Kimberley Scott and Xiaolong Zhang. 2014. Designing A Culturally Responsive
Computing Curriculum For Girls. International Journal of Gender, Science and
Technology 6, 2 (2014), 264–276.

[27] Ben Rydal Shapiro, Amanda Meng, Cody O’Donnell, Charlotte Lou, Edwin Zhao,
Bianca Dankwa, and Andrew Hostetler. 2020. Re-Shape: A Method to Teach Data
Ethics for Data Science Education. Proceedings of the ACM CHI Conference on
Human Factors in Computing Systems (2020), 124:1–13.

[28] Frank M Shipman and Catherine C Marshall. 2020. Ownership, Privacy, and
Control in theWake of Cambridge Analytica: The Relationship between Attitudes
and Awareness. In Proceedings of the ACM CHI Conference on Human Factors in
Computing Systems. 533:1–12.

[29] Natasha Singer. 2018. Tech’s ethical ’dark side’: Harvard, Stanford, and others
want to address it. https://www.nytimes.com/2018/02/12/business/computer-
science-ethics-courses.html

[30] Michael Skirpan, Nathan Beard, Srinjita Bhaduri, Casey Fiesler, and Tom Yeh.
2018. Ethics Education in Context: A Case Study of Novel Ethics Activities for
the CS Classroom. In Proceedings of the ACM SIGCSE Technical Symposium on
Computer Science Education. Baltimore, MD, 940–945.

[31] Bernd Carsten Stahl, Job Timmermans, and Brent Daniel Mittelstadt. 2016. The
Ethics of Computing: A Survey of the Computing-Oriented Literature. Comput.
Surveys 48, 4 (2016), 1–38.

[32] O Tene and Jules Polonetsky. 2013. A Theory of Creepy: Technology, Privacy
and Shifting Social Norms. Yale Journal of Law & Technology 16, 1 (2013), 1–32.
arXiv:arXiv:1011.1669v3 http://papers.ssrn.com/sol3/papers.cfm?abstract{_}id=
2326830

[33] Alicia Nicki Washington. 2020. When twice as good isn’t enough: The case for
cultural competence in computing. Proceedings of the ACM SIGCSE Technical
Symposium on Computer Science Education (2020), 213–219.

https://www.wsj.com/articles/the-data-colleges-collect-on-applicants-11548507602
https://www.wsj.com/articles/the-data-colleges-collect-on-applicants-11548507602
https://www.insidehighered.com/admissions/article/2018/11/12/new-data-admissions-including-application-trends-early-decision-and
https://www.insidehighered.com/admissions/article/2018/11/12/new-data-admissions-including-application-trends-early-decision-and
https://medium.com/bucknell-hci/the-ethical-engine-integrating-ethical-design-into-intro-to-computer-science-4f9874e756af
https://medium.com/bucknell-hci/the-ethical-engine-integrating-ethical-design-into-intro-to-computer-science-4f9874e756af
https://medium.com/bucknell-hci/ethical-design-in-cs-1-building-hiring-algorithms-in-1-hour-41d8c913859f
https://medium.com/bucknell-hci/ethical-design-in-cs-1-building-hiring-algorithms-in-1-hour-41d8c913859f
https://www.nytimes.com/2018/02/12/business/computer-science-ethics-courses.html
https://www.nytimes.com/2018/02/12/business/computer-science-ethics-courses.html
https://arxiv.org/abs/arXiv:1011.1669v3
http://papers.ssrn.com/sol3/papers.cfm?abstract{_}id=2326830
http://papers.ssrn.com/sol3/papers.cfm?abstract{_}id=2326830

	Abstract
	1 Introduction
	2 Related Work
	3 Course Descriptions
	4 Intervention
	4.1 Personalized Ads
	4.2 College Admissions Algorithms

	5 Student Surveys
	6 Insights from Instructors
	6.1 Observed Benefits for Students
	6.2 Observed Challenges for Students
	6.3 Challenges for Instructors

	7 Discussion and Recommendations
	8 Conclusion
	9 Acknowledgements
	References

