A Coin Flipping Game with Non-Transitive Odds
Stacy Jurgens

Abstract: Two players choose distinct sequences of Heads and Tails three entries long.
A coin is then tossed and the outcome, Head or Tail, is recorded. The first player to
observe his/her sequence occur is the victor. We will be examining the probabilities that
one player wins over another depending on the sequences chosen. Fair and biased coins
will be considered. The properties of the probabilities will then be examined. If the
probability that sequence A occurs before sequence B is greater than 1/2, we say that
sequence A "beats" sequence B. We will show that a biased coin (P(H)=2/5) yields the
probabilistic result that the sequence TTT beats TTH beats THT, but TTT does not beat
THT. Thus, the odds of the game are not necessarily transitive. We will examine this
and other scenarios to find out why and when the odds of victory are non-transitive.

Preface

At the beginning of this project, my honors thesis, I was unsure of what was
expected of me and what writing a math paper really involved. I started out looking at
cellular automata, not coin tossing. I had been interested in probability and its
calculations since my sophomore probability class, and wanted to do a project in that
area. As I studied and experimented in the field of probabilistic cellular automata, I
found that I was in over my head. The subject of cellular automata is vast, and I was
having a hard time focusing my efforts on any one part. In particular, I found myself
losing interest in the topic, thus slowing down my progress considerably. That is when I
decided I had to change focus. I still wanted to work with probability because I enjoyed
the calculations involved. But I wanted a subject that I could experiment in and

understand and interpret my results. When my advisor gave me Arthur Engel's papers to



read, I knew that I could use his method above and beyond what his papers narrated and
perhaps find my own interesting results. That is exactly what I did. However, as I neared
the end of my empirical research and began writing up my results, I found that other
mathematicians had already done much of my work, [3], [4],[5]. Since I had developed
my results independently, I continued preparing my thesis for submission, but also took
the time to familiarize myself with the other research that had been done. In the end, I
was satisfied with my work, but still in awe of the accomplishments of others and
intrigued by the amount of questions still left unanswered. I present to you now my
research, complete in its methods and purpose, results and questions.
Introduction

Coin tosses are as common today as the coins that are tossed. They are used to
determine possession in football games, starters in competitions, and who gets to pick
what movie to see on a Saturday night. Every probability textbook includes homework
problems and examples dealing with the tossing of a coin and its outcome. We have
examined a game that involves coin tossing, and have kept the rules simple. Anyone can
play, and it does not take a Mathematics degree to understand the basic numbers
involved. While this may sound simple, it is extremely interesting as we make the game
more complex and the coin being tossed less fair. Let us begin.

Section 1: Playing the Game

To start we will look at the simplest of the game’s variations. It requires two
players but only one coin. For the purpose of this paper, we will assume the coin has a
Head and a Tail side. Each player must choose a distinct sequence of Heads and Tails,

each three entries long. An example would be Player 1 choosing HHH and Player 2



choosing HTH. The coin is then tossed and the outcome recorded until one of the
sequences chosen occurs. Henceforth, the length of the game runs anywhere from 3 to an
infinite number of tosses. Since there are only two players, the sequences must be
distinct, and each must be exactly three entries long, the total number of scenarios is easy
to compute. First of all, the total number of possible sequences from which each player
can choose is:

(number of possible outcomes) (e mumber of entries in the sequence) — 5 3 — g,
Since the players must choose distinct sequences, that leaves the following number of
total different scenarios: 8 x8—8=56.

Now we will bring probabilities into the game. Using the method described in
detail further on, the probability that sequence A occurs before sequence B is computed
for each of the scenarios. If the probability that sequence A occurs before sequence B
is greater than 1/2, we say that sequence A “beats” sequence B. In this way we can
determine which sequences have better odds of winning. It is these odds that hold our
interest.

Before describing the method used to determine the probabilities of each
sequence winning, we must clarify a few definitions. The term ""win" in this paper
refers to one sequence occurring before another. This is different from the term
"beats" which refers to the property that a sequence wins over another with probability
greater than 1/2.

It is also important to point out some short cuts that can be taken due to the nature
of the game. Probabilistically, one of the players wins every time. Thus out of two

chosen sequences, if one sequence wins with probability p then the other wins with



probability 1-p. We will refer to this property as the "One Victor Rule". This
relationship allows for the reduction of 56/2 = 28 computations, leaving only 28 to still
be examined. Even more, 4 of these 28 remaining scenarios involve two sequences that
differ only by the last entry. The probability of either sequence winning in these
situations is simply the probability of the last entry occurring on each toss. For example,
if a fair coin is being used (that is P(H)= P(T)=1/2) then the probability that HTH occurs
before HTT is 1/2, the probability that the last toss will be a Head. A chart of the
different sequences and their probability that the column wins over the row using a fair

coin is given below. Note the symmetry occurring because if p= 1/2, then 1-p=1/2 as

well.
Chart 1.

HHH HHT HTH HTT THH THT TTH TTT
HHH 1/2 3/5 3/5 7/8 7/12 7/10 1/2
HHT| 1/2 1/3 1/3 3/4 3/8 1/2 3/10
HTH 2/5 2/3 1/2 1/2 1/2 5/8 5/12
HTT 2/5 2/3 1/2 1/2 1/2 1/4 1/8
THH 1/8 1/4 1/2 1/2 1/2 2/3 2/5
THT| 5/12 5/8 1/2 1/2 1/2 2/3 2/5
TTH| 3/10 1/2 3/8 3/4 1/3 1/3 1/2
TTT 1/2 7/10 7/12 7/8 3/5 3/56 1/2

The eight entries in bold print are those that involve sequences differing only by
the last entry. Note that either the top or the bottom of the chart can be examined due to
the "One Victor Rule".

All of these reductions result in 24 scenarios that must be more carefully
examined. We will look at the bottom corner of the chart (the italicized entries) using

the Probabilistic Abacus Method.



Section 2: The Probabilistic Method

The Probabilistic Abacus Method, developed by Arthur Engel [1], requires no
more mathematical knowledge than basic algebra and the ability to count. It is after the
probabilities have been computed that the more interesting results began to appear. The
method is most easily described using a specific example, so we will introduce it by
determining the probability that HHH occurs before HTH (that is, the probability that
HHH wins over HTH) when a fair coin is tossed.

The first (and perhaps most difficult) step is to draw a diagram of all the possible
outcomes of the flipping coin, keeping in mind that the coin will stop flipping only when
one of the chosen sequences has occurred. For the case of HHH versus HTH, the
diagram is as such:

Figure 1.

oW

From the starting point the coin is tossed once, and its outcome is either a Head or
a Tail, indicated by the two arrows going from “start” to “H” and “T”. With each toss,
there are two possible outcomes, thus each circle must have two arrows (indicating the
two possible outcomes) originating from it. Of these two arrows, one must go to a “H”
position and the other to a “T”. The only exceptions to this rule are the circles

representing the outcome of the last coin toss. At this point, one of the sequences has



occurred and the game is over, the coin will not be tossed anymore, thus there will be no

arrows originating from these circles. These rules are little more than basic observations,
but they are very useful when constructing the diagrams. See Appendix A for a complete
list of game diagrams involving sequences of length three.

Once the diagram is drawn, the problem is simply an algebraic one. Each arrow
represents a coin toss while its destination represents a possible outcome. With a fair
coin, the probability of each toss being a Head or Tail is 1/2, thus each arrow represents a
path taken with probability 1/2.

Figure 2.

Head Head Head

172

Each circle represents a state in the game. For example the start circle represents
the game before any tosses have occurred, thus once a toss is made it is impossible to
return to the start position. The expressions inside each of the intermediate circles
represent the state's label (0,1,2,3, or 4) and the probability of HHH winning from that
state (a,b,c, or d). (Note that the probability of winning from state 0 does not have a
variable. The purpose of this exercise is to find that probability, and we will be defining

it in terms of the other variables.) The two colored states are "absorbing" states, once you



have reached one of them you cannot escape and the game is over. The circle with
vertical stripes in Figure 2 represents one of the two possible results of the game, the
situation where the HHH sequence occurs before the HTH (thus HHH wins). We will
find the probability that HHH occurs before HTH, making the probability the HHH wins
from the vertically striped state 1. The probability that HHH wins from the horizontally
striped state is 0, since HTH has won at that state.

What we are looking for is the probability from the start that HHH occurs before
HTH. To find this we must determine the intermediate probabilities in the remaining
four states, that is determine a,b,c, and d.

Now, at any state on the diagram in Figure 2 (with the exception of the two
absorbing states, whose probabilities are already known) there are two situations that can
occur. Either a Head or a Tail will be tossed and the game will continue on
appropriately. Thus there are two ways that victory can be obtained from each of these
states, either by flipping a Head and carrying on or by flipping a Tail and continuing.

Recall that H= the event we toss a Head and T= the event we toss a Tail. Define
W,= the event that HHH wins from state n (n € {0,1,2,3,4}, for the remainder of this
paper the subscript n will refer to this indexing set). Recall also that a,b,c, and d are
defined as the probability of HHH winning from a given state on the diagram, for
example P(W)=a. Then generically the probability of HHH winning from any of the
intermediate states can be thought of as follows:

(1)  P(W)=P(winning and getting a Head or winning and getting a Tail).
Since the events of getting a Head or a Tail are mutually exclusive, the following holds:

)  P(W)=P(WNH)UWNT))= PWNH)+P(WNT)= P(WH)P(H)+ P(W|T)P(T).



P(W|H) is the probability of winning from the state fraveled to upon flipping a
Head, likewise P(W|T) is the probability of winning from the state traveled to upon
flipping a Tail. Also, since we are using a fair coin in this example, P(H)=P(T)=1/2.
Thus the probability of HHH winning from the starting state (and thus the probability that
HHH wins) in Figure 2 is:
(3) P(W)=ax1/2+bx1/2=a/2+b/2.
Repeating this process to find P(W,) for each of the intermediate states yields:
4) PW)=a=axl/2+bx]/2
(5) P(W,)=b=cx1/2+dx1/2
(6) P(W,)=c=dx1/2+1x1/2
7 PW,)=d=ax1/2+0x1/2
Solving this system of linear equations algebraically yields a=2/5, b=2/5, ¢=7/10, and
d=1/5. Thus, by substituting these values back into (3) we get P(Wy)=2/5. Thus the
probability that HHH wins over HTH is 2/5. Thus, since 2/5 < 1/2, HHH does not "beat"
HTH. The technique is quite simple once you get the hang of it, and the remaining 23
situations are quickly analyzed, resulting in Chart 1.

Section 3: The Biased Coin

Looking at the same example, P(HHH wins over HTH), only with a biased coin,
requires only a small adjustment in our diagram and calculations. The shape of the
diagram remains the same, what has changed is the probability that one travels from one
state to another. Looking at a generic coin, P(H)=p and P(T)=1-p, thus the diagram is as

follows:



Figure 3.
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The same technique used with the fair coin is now used to determine the values of
a,b,c, and d.
®) PW)=ax(1-p)+bxp
9) PW)=a=ax(l-p)+bXxp
(10) PW,)=b=cxp+dx(-p)

(11)  P(W,)=c=1xp+dx(l-p)
(12) P(W)=d=0xp+ax(l-p)

Solving the system of equations in (9)-(12) yields, a=b=— p/(p* -p-1).
Plugging these values back into (8) gives the following result:

(13)  P(HHH wins over HTH)=p/(1+ p— p*).

The preceding was a step by step example of how to determine the probability
that one sequence occurs before another, using both a fair and a biased coin. Note that in
this specific example P(Wo)=P(W)=P(W;). This is the case when both sequences begin
with the same outcome, H or T. Thus neither can began its path to victory until that first

outcome is obtained.



Now that we have found the probability that HHH occurs before HTH, finding the

probability that HTH wins over HHH is easy due to "One Victor Rule".

(14)

P(HTH wins over HHH)=1-P(HHH wins over HTH)= (1 - p*)/(1+ p - p*).

Repeating this method for the remaining 23 scenarios and then applying the "One

Victor Rule" results in Chart 2. Recall that the values in the chart are the probability that

the column wins over (occurs before) the row.

Chart 2.
HHH HHT HTH HTT THH THT TTH TTT
HHH 1-p>  |(@-D'(p+) | D) | (-0 p4D | (=Dt p4)
b=p Wi 7| p-per | 7P p-ptl peptl |0 g
HHT pel [ pml ) ) (p=D'(p+D[_(p-D'(p+1)
P p—2 p—2 l_p (P‘l) (P+l) pz_p+l p3_3p2+2p_1
HIR| 2 | =i ; p’ =1 |(p-D(p+) |
l+p-p° p—2 p p—2 pzz_pH 1-2p° +p 7l
HTT ? -1 -p+1
P p-p
- —— P P —_— _1\2 133
THH 2 p-r-1] 1 1-p ~(p-1)’
P i p-2 A TP | PP -pl | P o3p2p-l
TEL | ¥ 0D P’2-p) [=p(p-2 1 p=1
-p+l [Ep=p) |5 £ 2 o
p-pt pl+p-p7) pz_p_l_l p+l p+1 p--p-1
TTH 3 2 2
-p(p-2)|-p(p-2) p p
3 7_ p’QR-p)| P2-p) = Y 1-p
p-p+tl | p*-p+l p-—-p+l p+1
TIT |-y | P -3p4d) | P -3p+3) - P'(p-2) Lfﬂﬁ i
5= 3p-| -3+ 2p-1 p-ptl plp"=3p+3) pP-3pp-1| pT-p-1

Section 4; Results

Now that all of the work is finished we look at the interesting implications of it.

By entering Chart 2 into a Microsoft Excel program we were able to look at many
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different results using different biased coins. In trying different values for p=P(H), we

came upon the following lemma:

Lemma 1. If P(H)=2/5, then the odds of a sequence beating another are not transitive.

Proof: Let P(H)=2/5.

Then the probabilities of column winning over the row are as follows:

Chart 3.

HHH HHT HTH HTT THH THT TTH TTT
HHH 3/5 21/31 63/83 117/125 | 351/475 | 351/415 | 137/188
HHT 2/5 3/8 3/8 21/25 63/125 63/95 27/55
HTH| 10/31 5/8 3/5 21/40 63/95 93/125 | 279/475
HTT| 20/83 5/8 2/5 2/5 19/35 9/25 27/125
THH| 8/125 4/25 19/40 3/5 3/5 15/19 45/77
THT| 124/475 | 62/125 32/95 16/35 2/5 5/7 15/31
TTH| 64/415 32/95 32/125 16/25 4/19 2/7 3/5
TTT| 51/188 28/55 196/475 | 98/125 32/77 16/31 2/5
Note that:
(15) P(TTT wins over TTH)=3/5>1/2=TTT beats TTH
(16) P(TTH wins over THT)=5/7>1/2=TTH beats THT
(17)  P(TTT wins over THT)=15/31<1/2=TTT does not beat THT

Thus although TTT beats TTH beats THT, TTT does not beat THT. The odds of a
sequence beating another are not transitive for p=P(H)=2/5.

A reasonable question to ask at this point is: For what values of p=P(H) are the
odds of victory transitive? In order to determine this, all possible trios of sequences must
be examined, a daunting task. We will start by looking only at the trio TTT, TTH, THT.

Example 1.
First we add the stipulation that TTT beats TTH beats THT. Now we must find a value

of p=P(H) such that TTT does not beat THT, or P(TTT wins over THT)<1/2.



Using the results in Chart 2:

(18) TTT beats TTH=P(TTT wins over TTH)>1/2= 1- p>1/2= p<1/2
(19) TTH beats THT=P(TTH wins over THT)>1/2= 1/(p + 1)>1/2=p<I

Assuming TTT does not beat THT =P(TTT wins over THT)<1/2,

2

-1 1
0) —E < 2p-2>p-p-1=0>p*-3p+l=p>
p-p-1 2

Therefore e _2\/3 <p< % =TTT beats TTH beats THT and TTT does not beat THT.

Example 2.
We examine the case where HHT beats HTT beats THH but HHT does not beat THH.
(21) HHT beats HTT=P(HHT wins over HTT)>1/2= p>0
(22) HTT beats THH=P(HTT wins over THH)>1/2= p<1/2
(23) HHT does not beat THH=P(HHT wins over THH)<1/2= pt< 1/ 2=>p< 72 /2
Since 1/2<+/2/2, 0< p < 1/2 satisfies the three equations, making this case
non-transitive. It is of interest to note here that if p=1/2, then the
P(HTT wins over THH)=1/2, which means that neither sequence has higher odds of

winning than the other.

Example 3.
Looking at a longer chain of sequences, we examine the case where HHT beats HTT
beats TTH beats THH but HHT does not beat THH.

(24)  HHT beats HTT=P(HHT wins over HTT) >1/2= p>0

(25) HTT beats TTH=P(HTT wins over TTH)>1/2= 2 "2\5 <p
: V5-1
(26) TTH beats THH=P(TTH wins over THH)>1/2= p < 5

(27) HHT does not beat THH=>P(HHT wins over THH)<1/2=> p <~/2/2

12



Since

N5-1 42 2-42 75 -
2

| . . .
<—, <p< 5 satisfies the four equations, making this case

non-transitive.

Section 5: Questions

When the writer began her research, the Probabilistic Abacus method was the
main focus. The method is extremely simple yet incredibly powerful, and appeals to the
visual person with its game diagrams. The mathematics involved in running the method
are simple enough to be handled by grade-schoolers as they begin to study probability
and coins, making it an attractive teaching tool. As the method was used repeatedly,
numbers were acquired that led to the above observations and examples. At this point in
the research, many questions still remain. Why does the method itself work? It is known
that the Mathematics functioning behind the Probabilistic Abacus involve chip-firing and
absorbing Markov Chains, see Engel [2]. Then there are questions specific to the game
itself. Is there a value range for p such that the odds of winning in a game are always
transitive (regardless of the sequences chosen)? And why does the non-transitivity
occur?

Section 6: Extensions

Now that we have examined the Probabilistic Abacus method and its application
to the coin-tossing game involving sequences of length three, it is worth noting that there
are many other games that can be studied using this method. The main requirement a
game must have in order to fit into the Probabilistic Abacus is that states in the game can
be visited more than once, resulting in infinitely many outcomes (or "tosses") yet still
comprehendible because of the recurrence of states. Some examples of other games that

can be studied follow.
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Example 1.

Our example of a coin being tossed and players choosing distinct sequences of
three possible outcomes can be extended to games where the sequences are more than
three entries long. Of course, the longer the sequence the more involved the game
diagrams and computations. Still, analyzing the game remains simple with the use of the
Probabilistic Abacus Method. A specific example would be the sequence HTHT versus
HTTH, which has the following game diagram.

Figure 4.

o

(D@

Example 2.

Another prop that yields interesting and exciting games is a die. Games played
with a die (as in a pair of dice) are more complex because of the six-possible outcomes.
To begin looking at the probabilities involved in rolling a die it may help to categorize
the possible outcomes, such as evens and odds. Then sequences can be chosen regarding
which category the outcome falls in, such as the three-entry sequence Even-Even-Odd.
Other possible games include rolling a pair of dice and observing the sum, difference,
product, or quotient of their faces. To add even more complexity consider dice with

more than six faces. For example, the board game Scattegories© contains a 26-sided die



with the letters of the alphabet on its faces. While time consuming, it is possible that the
reader may find the probability that his/her name will be rolled before that of Elvis
Presley's.

There are countless other games that can be played using a prop that yields a
finite number of outcomes, we have only discussed the more common ones, coins and
dice. And with each prop there are numerous ways to choose sequences and patterns
when determining the rules for a game.

Conclusion

The Probabilistic Abacus Method is a very nice tool in examining the
probabilities associated with infinite patterns of a finite number of outcomes. While the
method itself is powerful both in its simplicity and reasoning, the probabilities extracted
from it also yield interesting results. And what’s the probability of that?
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Appendix A: Game Diagrams for Sequences of Length Three

IS versus HIIT

I versus TIIT

THIIE versus TT'T

T versus HTII HIIT versus HITH

B-®

HHIIT versus HTT

GD-®

HITHI versus HTT

.



HTH yersus THT

T versus THH mw HIIT versus TTT

:ﬁ: versus ,_ I




HTT versus TIII HTT versus TTT THIH versus TTT

THT versus TTT

OO0
) T
ORONO



TTH versus TTT

i



