Wendy Bergh

Thesis Advisor: Dr. Eric Lund

An Investigation of Wavelets

In everyday terms, awaveler would probably be understood to be a small wave. To a mathematician,
however, there is a more specific and technical usage for this term. In the mathematical world of signal
processing, wavelets are the basis elements of various "wavelet spaces," which in turn are orthogonal
complements of other vector spaces. Although the theory behind wavelets is somewhat complicated, the
vector spaces that give rise to them (to Haar wavelets, any way, which will be the main subject of this
paper) have a very straightforward definition. In this paper we will examine Haar wavelets, showing the
utility of this mathematic topic, presenting some calculations involving them, and explaining the
mathematical terminology already mentioned, such as vector space and orthogonal complement. Then

we will discuss how the mathematics behind Haar wavelets can be extended to develop other families of

wavelets, families that are more commonly used in actual practice.

Say that we have a set of data points (x!., yf) such that each of these points is a sample of a function

y = f(x). One way to display these data points its_‘_’t'o plot each individual point and then connect all
neighboring points with line segments. When computer-algebra packages graph functions, this is what
they are doing. Using uniformly -spaced sample points often isn't the best approach to plotting a function

unless we use a large number of points. Here is an example of how using sample points can be

problematic. Consider the functions y = cos(10x) and y = cos(100x). On the interval [0,1], using 32

equally spaced x-values, the graphs of these functions look like this:

y = cos(10x)

-0.48 T

|
y = cos(100x),

4

0754

The actual graph of y = cos(iOx) is very close to the one that we just plotted. However, the actual graph
of y = cos(100x) does not look like the other one we just plotted. The graph of y = cos(100x) that we
plotted leads us to believe that it is a function which oscillates in a pulsing pattern, when our intuition

leads us to believe that it should be just a horizontally telescoped version of the y = cos(10x) that we

plotted. Our intuition is correct, but-the uniform sampling of only 32 points results in a graph unlike,

although close to, what is correct. The phenomenon in the graph that deviates from our expectations is
known as a/izsing: sometimes this results in a jagged, stairstep effect on curved or diagonal lines that are
reproduced in low resolution, as on a computer display . If we were to use more samp led points to replot

the y = cos(100x) function, we would see a faster repeating form of the y = cos(10x) graph we plotted,

just like we would expect to see.

Simply sampling and connecting points of a function is not the only way to get an approximate graph of
that function. Another way uses the idea of sampling points, but focuses on clustering points where a
function has a large amount of variation. This is an adaptive plotting routine that examines angles
between connecting line segments in "provisional internally -generated" plots which are based on
uniform sampling, After identifying regions of large variation, the adaptive plotting routine will produce
a visible plot following the subdivision of certain intervals. Wavelets give rise to an adaptive plotting
scheme that does not require any person or computer to consider angles first when looking at default
plots. Concerning these two methods of graphing a function, it seems that if we continually replot a
function with more and more samples we will get numerous graphs that eventually converge to the true
graph. This is generally true using the first ty pe of sampling mentioned, uniform sampling, and the
second type of sampling mentioned, uniform sampling with clustering where the function has significant
variation. However, it doesn't matter what scale we utilize, there will come a time where we won't know
if additional sampled points are necessary or even helpful. The question is this: How many points do we
need to plot to get the correct graph? The answer to this question depends highly on the amount of

variation the function has over the chosen interval and the size of the picture we are going to look at.

The two examples of different methods to graph a function that I mentioned above work decently in

1 i .
most cases, but not always. Say we wanted to graph a function like y = co{ ;) . This function has an

3

infinite number of extrema on the interval (0,1]. That will cause problems for any plotting routine! If we
were to plot the graph using 32 uniformly sampled points, the result would be misleading and not a true
depiction of the function. To make the problem worse, if we were to use more points (uniformly or
adaptively), the graph would appear much denser because of the thickness of the line segments
connecting the points. Keep increasing the sampled points, and the graph will just fill up with the

connecting line segments. Because of the limitations of plotters and printers, it is impossible to

1 : :
accurately graph the functiony = cos(—) . And this is not the only function that gives plotters or
X

printers trouble-there are lots more.

Instead of joining points with line segments, we could also use the y-values as step levels for a staircase
effect. In doing so, we would just use vertical lines to connect the steps of y-values. One might think that
these vertical lines would be unwanted, or misleading, but that needn't be the case. The staircase method
sometimes leads to better approximations of a true graph when more points are used, although a lot more

are needed to minimize the jaggedness and obtain a continuous effect.

There are also questions of data storage and transmission. These become very important when looking at
higher-dimensional analogues of data points in the plane, like in digital iniages. Let's think about images
that are derived from two-dimensional array s of pivels: numbers that represent gray -levels ranging from
black (minimum number) to white (maximum number). These can be thought of as data points (X, y, z)
where z measures the gray-level at position (x, y). Now what we really have are two-dimensional step

functions where the steps are shaded according to height. If we have an image that is composed of

256 x 256 pixels, it is derived from a matrix of 256 2 = 65536 pieces of data, each representing a gray -
level. If we were to use a lower resolution for the image it would appear noticeably more "blocky" than a

higher resolution image, so the higher the resolution, the better the image. This results in a requirement
4

of a lot of data to represent an image which leads to practical problems. Image files are time consuming
to transmit. Anyone who has viewed pictures on the internet would agree. In most images, though, there
are regions of little or no variation. The goal of wavelets is to take advantage of these somehow, and

come up with a more economical way to store the matrices that represent the images.

There is a wavelet scheme for transforming and compressing digital data. These data can represent
samples of a function or a matrix of gray levels (like in a picture image), for a couple of examples. The
wavelet scheme is the same for either type of data. The main goal of wavelets is to transform data into a
form where areas of low activity in the original data set become easy to find in the transformed version.
This method can be applied to plotting functions because data strings allow us to identify uniformly
sampled functions. Consider a string of eight data values: 10,10,20,16,24,32,32,48. This could be
uniform samples of a function, or a row of an 8 x 8 pixel image, or something else. The processing of
this data that I am going to explain is called averaging and differencing. This process can be generalized
to any string of length equal to a power of two, and if the string length is not equal to a power of two we
can just add zeros to the end of the string to satisfy this requirement. Now, back to our string of eight

data values: 10,10,20,16,24,32,32,48. The rows of the following matrix show the steps that lead up to the

[10 10 20 16 24 32 32 48 |

_ _ . 10 18 28 40 0 2 -4 -8

final result of the averaging and differencing process: 4 34 -4 -6 0 2 -4 -8
'24 -10 -4 -6 0 2 -4 —SJ

The first row of the table is the original data string. If we think of the first row as four pairs of numbers,
the first four numbers of the second row are the averages of the pairs in the first row. Continuing, the
first two numbers in the third row are the averages of the four averages in the second row, taken as pairs,
and the first entry in the last row is the average of the preceding two computed averages in the third row.

The other numbers in each row measure the deviations from the averages. The last four numbers in the

second row are what we get when we subtract the first four averages from the first numbers of the pairs
that made these averages. If we subtract 10, 18, 28, 40 from 10, 20, 24, 32, respectively, we get 0,2,-4,-8.
These numbers are called derail coefficients and are repeated in every consecutive row on the table. The
third and fourth numbers in the third row are from subtracting the first and second entries in that row
from the first numbers of the pairs that are at the beginning of row two. If we subtract 14,34 from 10, 28
we get -4,-6. All computed detail coefficients are then repeated in each consecutive row after the row in
which they are first computed. Finaliy, the second number in the last row, -10, is the detail coefficient
from subtracting the overal average of 24 from the 14 that starts row three. The last average in the table,
the first number of the fourth row, is the overall average of the original eight numbers. This overall
average does not have an effect on the shape of any type of plot of the data: it just positions the data
vertically. The seven detail coefficients are what determines the shape of the data. What we have done is
transformed the original string of numbers into a new string of numbers. If we wanted to get the original
string back, we would just work backwards. This is great because it means we didn't lose any
information when we transformed our string of numbers. We also can slightly change the transformed
version and still get a close approximation to the original data. When I say slightly change, I mean

taking advantage of the areas that have low activity. The transformed string has one detail coefficient of
0 which came from the adjacent 10's in the original string. This suggests an arca of low activity. The

next smallest detail coefficient is 2. If we reset this to zero, it would make the last row look like

24, -10, -4, -6, 0, 0, -4, -8. If we work our way back to get the new string of numbers that would have

(10 10 18 18 24 32 32 48 |

) 1 Ao it i 10 18 28 40 0 0 -4 -8
t 1 ike this: .
come from our new last row, the table woula 100 e this P T (S G T T .

24 -10 -4 -6 0 0 -4 -8

The first row in this new table is an approximation to the original data. Now let's plot the original data

string and the approximation to the original data string using the numbers in the string as our y-values

.) 2 i
with corresponding x-values of %, R %, respectively.

plot
of

10 10 20 16 24 32 32 48
and E

10 10 18 18 24 32 32 48

You can see that there is a difference, but it is hardly noticeable. Even if we change a few more detail
coefficients to 0, the new approximation to the original data set will still be very good. Let's change the |
-4's to 0 as a further demonstration. The last roiv would look like 24,-10,0,-6,0,0,0,-8. Again, working

back to get the new string of numbers that would result from our new last row, the table would look like:

(14 14 14 14 28 32 32 48]
14 14 28 40 0 0 O -8
14 34 0 -6 0 0 0 -8
(24 -10 0 -6 0 0 0 -8

. Also, let's plot the original and the second approximation to the

original the same way we just did with the original and the first approximation.

I')lof

o{ 504
10 10 20 16 24 32 32 48 gl
and - |
5O'J' -
i J /r
14 14 14 14 28 32 32 48 il 2z
‘ ; PO o St
10 + ’/
F g t S ¥ A — _f_‘_

This shows us that even though we are down to minimal data (only five numbers have been kept from
the original last row using thresholding), the resulting approximation to the original data set is still very
good. This is how the compression scheme works in general. Start with a data string and transform the
string as we did above, then decide on a nonnegative threshold value €. Reset to zero any detail
coefficient whose absolute value is less than or equal to €. This should lead td a relatively sparse data
string that has a good proportion of zeros and is corﬂpressible when it comes to storing tﬁe data string.
If we let € = 0, this process is called /ossless compressionbecause no information is lost and we can get
our original string back. If we let € > 0, this process is called Jossy compression beéause some, although
potentially little, information will be lost and we wﬂl get an ap proximation of the original string based
on the newly transformed string. Even after resettinga significant proportion of the detail coefficients to
zero, we still generally get decent ap proximations to the original string of data. It is hard to see how

useful this scheme is when we just use a string of eight numbers. Imagine, though, that we are working

with a string of length 210 =1024. After ten app lications of the averaging and differencing process we
would get a string with one overall average and 1023 detail coefficients. Now a substantial redﬁction of

required storage space can be achieved if many of these detail coefficients are set to zero. And we can

still always work our way back up to a good approximation of the original string.

Averaging and differencing can also be done with matrices, although for large data sets using matrices is
not the most efficient approach. We will go through an example just to see how the matrix approach

would work. Let 4, 4,, 4, be the following matrices, respectively:

05 0 0 0 05 0 0 0 05 0 05 00 0 0 0 05 05 0 0 0 0 0 O
05 0 0 0 -05 0 0 0 05 0 -05 0 00 0 O 05 -05 0 0 0 0 0 ©
005 0 0 0 05 0 0 0 05 0 05 0 0 0 O 0 0 10 0 0 0 O
0 05 0 0 0 -05 0 0 0 05 0 -05 0 0 0 0 0 0 01 0 0 0 0
0 0 05 0 0 0 05 0 0 0 0 01 0 0 0 0 6 00 1 0 0 0
0 0 05 0 0 0 -05 0. 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0
0 0 0 05 0 0 0 05 0 0 0 0 0 0 1 0 0 0 00 0 0 1 0
0 0 0 05 0 0 0 -05 0 0 0 00 0 0 1 0 6 00 0 0 01

The three-step transformation that we did previously when we went from the string of eight data

10, 10, 20, 16, 24, 32, 32, 48 to the approximation string 24, -10, -4, -6, 0, 2, -4, -8 can be carried out in
terms of the following matrix equations:

(10, 18, 28, 40, 0, 2, -4, -8) = (10, 10, 20, 16, 24, 32, 32, 48) 4;

(14, 34, -4, -6, 0, 2, -4, -8) = (10, 18, 28, 40, 0, 2, -4, -8) :4,;

(24, -10, -4, -6, 0, 2, -4, -8) = (14, 34, -4, -6, 0, 2, -4, -8) 4.

The matrix multiplications carry out the task of averaging and differencing. And furthermore, the results
of these three matrix equations can be accomplished by the single equation:
(24, -10, -4, -6, 0, 2, -4, -8) = (10, 10, 20, 16, 24, 32, 32, 48) 4, -4, 4, .
From basic linear algebra, since the columns of each A matrix are mutually orthogonal (from using the
standard dot product), but no column is entirely zeros, this means that each of these matrices is
invertible. The inverses reverse the three averaging and differencing steps that lead to the approximation

string and give us the original string of data back. Doing so would look like:

(10, 10,20, 16, 24, 32, 32, 48) = (24, -10, -4, -6, 0,2, -4, -8y 4, -4, .

This routine can be done in general to construct any corresponding 2'x 2”7 matrices A’l, /12 5 05 § A’r needed

to work with strings of data of length 2.

Now we can use some of the standard concepts and notations used in the general study of wavelets to
give the previous example of averaging and differencing a firmer mathematical foundation. To do so, we
present an alternative vector spéce description of our discrete, 8-member data sets. A vector spaceV is a
set of elements (called vectors) that is closed under addition and scalar multiplication, on which the
fOllowing axioms are satisfied for every u, v, and win V and for all numbers rand s: a) u+v=v+u

b) @+v)+w=u+(v+w) c)there is a special member 0 (called the zero vector) of V such that
u+0=u foralluinV d) for every member u of V there is a additive inverse, -u, in V such that
ut(-u)=0 eru+v)=m+ f)(r+su=m+su g (rs)u=r(su) h) lu=wu. When all these properties
are satisfied then V is called a vector space, and the members of V are called vectors. M oving on, we can
identify data strings with a certain class of step functions. A string of length k is identified with the step
function on [0,1] which (potentially) changes at k — 1 equally spaced x-values and which uses the string
entries as its step heights. These step functions can in turn be thought of as linear combinations of
dyadically dilated and translated unit step functions on [0,1). For example, the string of y-values that

comes from uniformly sampling the function f(x) = cos(10x) thirty -two times in [0,1] is identified with

the step function plotted in this graph:

y = cos(10x)

step function

10

1 if0=z=1
Consider the Haar scaling funtion: ¢(#) =) This function satisfies ascaling equation
0 otherwise.

of the form ¢(x) = Z c,0(2x — 1), where in our case the only nonzero ¢ s are ¢, = ¢; = 1, which makes our
|7

function look like ¢(x) =®(2 x) + ¢(2x— 1). For every 7such that0 < 7 < 7, we get an induced

(dyadically) dilated and translated scaling function of the form 4)1.3 (x)=9¢ (23x = z‘). These eight

functions form a basis for the vector space /', of piecewise constant functions on [0,1) with possible

2

1 1 1
where ¢03 equals 1 on [0, g) only and is 0 elsewhere, ¢13 is 1 on [g, g’)

breaks at 3 ki oy

]

4
8

oo|w

&
8

3

%) only, and so on.

oo | o

only, ¢23 islon]|

Now consider the element 100,” + 10 ¢,* + 200, + 16¢,” + 240, +320," + 329’ + 486, € 77,

which is just another way of expressing our earlier data string 10, 10, 20, 16, 24, 32, 32, 48. We now

have a step function representation of our data string. Any string of length eight can be identified with an

element of 7, . We can describe the averaging and differencing scheme from earlier in terms of this

version of data strings. To do so, we again need vector spaces and a few more definitions. Let

Vp Vypeons ¥, be vectors in a vector space V. The set S of all linear combinations of Vi Vpoons ¥, is called

the spanof v, v,,...., v, We can also say these vectors span S. A basisfor a vector space V is a set B of

11

vectors of V such that a) B is linearly independent and b) B spans V. Now, similarily to before, the four
functions ¢£_2 defined by (])z.z(x) = ¢(22x —), for 0 < 7 < 3, form a basis for the vector space /7, , of

1

piecewise constant functions on [0,1) with possible breaks at e % . And the two functions

0o

3

¢t.1 defined by qu.l(x) = ¢(2Ix —), for0 < 7< 1, form a basis for the vector space 7 , of piecewise

1 .
constant functions on [0,1) with a possible break at - And ﬁna]ly,q)oo = ¢ itself is a basis for the vector

space /', of constant functions on [0,1). This¢(#) is sometimes referred to as the father Haar wavelet.

Note that there is a subspace relationship among these 7 vector spaces suchthat /) € V| S V,€7,.

We can identify the various averages derived in our earlier example of scheming with elements of these

¥, vector spaces. To do so, we treat these averages as lower-resolution versions of the original string.
This allows us to match 10, 18,28, 40 with100,” + 18 ¢,> + 28 0,” + 40 ¢,”, and 14 and 34 with

14 ¢01 + 34 ¢11 , and lastly 24 with24¢00 =24¢ . Now we just need to find a new interpretation for the

detail coefficients. This is where the wavelets come into play. Consider the Znner product
1

(fg)= J J(#) g (#)dedefined on 7. Two functions in /;are orthogonal if and only if their inner
0

product on [0,1] equals 0; that is, if the product function captures equal areas on each side of the

horizontal axis. For every /= 0, 1, 2, we define the wavelet space tho be the orthogonal complement of

Vj.in Vj+ | » S0 that we get the orthogonal direct sum decomposition of ‘Vj+ i Vj+ 4= VJ.EB WJ . Then

we have the following relationships: 7, =V, @ W,=V, @ W\ ®@ W, =V & W ® WV, ® W,.

Expressing step functions in //, in terms of these new bases brings us to the various detail coefficients

12

we came across before, which are known as wavelet coefficients.

1
1 03fandz‘<5

The mother Haar wavelet is defined by w(#) =1 _4 1 < sandr<1 " This new function is

2

0 otherwise

related to the father Haar wavelet by means of the equation y(x) =¢(2x) — ¢(2 x— 1) . Then y(x) is

~ abasis for /#/ since y is orthogonal to ¢. The four functions 1[.11.2(x) :\p(sz—- i), for0 <7< 3,forma
basis for /7, because they are orthogonal to the corresponding functions ¢l.2(0 < 7 < 3) which forma
basis for the subspace 7, of 7, . (We shall explore this orthogonality in greater detail a bit later in the
paper.) Similarily, the two functions \p!.l defined by %1 (x) = q;(21x —), for 0 < 7< 1, form a basis

for Wl.

Note the correspondence between the standard basis for R® and

[~ = = = =]
o o = O O O o o
- o O O O O o o

o o O o = o O o
o - o o o o o O

o o o o o —~ o o

A - - -
o o o o c o ~ o

the basis 5} = { ¢03, ¢]3, ¢23, ¢33,) 43, ¢53, ¢63, ¢73} for 7, and the correspondence between the

non-standard basis
13

[1 [1 [1 0o][1 { 0 { 0 0
1 1 1 0 -1 0 0 0
1 1 of 0 0 1 0 0
1 1 =1 0 0) 0 0

| Y . o ; , ; for R® and the basis

1 -1 0 1 0 0 -1 0
1 =1 0 = 0 0 0 1
1 -] oo =1 0 0 0 =f |

B = { o, v, \llol, 1|111, \1102, \pf, 11122, 11!32} for 7, . We want to work with the basis 2, instead of the more
obvious basis .5; because it is the wavelets that allow us to do the differencing and detailing, which in

turn allows for the compression of data.

Using the notation from above, the three steps in the averaging and differencing transformation in the
preceding section correspond to the following chain of identities:

3 3 3 3 3 3 3
100, + 10 ¢ + 200, + 166, + 249, + 3205 + 320, + 486,

— 2 2 2 2 2 2 2
=100, + 180,"+ 280, + 400," + 0¥ +2y -4y, -8y,

=14¢01+34¢11—4w01—-61p1]+0w02+2w12—4w22—8\y32

:24q>00—10%0—4\];01—6w11+0q102+2w12—41|122—-8w32.

This fully-transformed version consists of one overall average and seven wavelet coefficients. This is
simply a decomposition with respect to a very special basis. When we got rid of the smallest detail
coefficients earlier (by setting them to zero) to get a string that was more sparse, all we were doing was
setting some of the wavelet coefficients to zero. In our first compression examp le, we ap proximated

: 3 3 3 3 3 3
100, + 10 0, +209,” + 160, + 240, + 320" + 320, + 43¢,

2400~ 10y — 4y, = 6w, + Oyl + 2y — 4y 8y

by the element 24¢00 - 10 IIJ’OO -4 11;01 —§ wll -+ 1|102 +:0 11112 —4 qrzz —8 wf . This idea can be

14

extended in the following way: for each nonnegative integer J, let Vj. be the vector space of piecewise

1 ‘ .
constant functions on [0,1) with possible breaks a —1~., i., —3—.,...,] — — . Then the 2/ functions
¥ g ¥ 2/

q)[.jdeﬁned by (1)’./'(,1*) =o(2%%—7),0< i< 2/ — 1, form a basis for 7, We then get an infinite
ascending chain of vector spaces /, &V, €V, & V.3 c...C VjE Vj+ g ="" each of which is an

1

inner product space with respect to the inner product(£ &) =J F(#)g (7)dr. The wavelet space Wj is
0

then defined to be the orthogonal complement of Vj.in Vj 4 1+ The functions I|Il.j (2] = qf(2jx —) for

0 < /< 2/ — 1 forma basis for Wj and for any / we have

Vj.=Vj._1€3 PVJ._1=VJ.72€B Wj_zea Wj_1= =v,ew,emw o W,®..90 H§_2® ﬁ;_l.
This means that if we were to, say, work with a string of length 256, it would be equivalent to

working in the larger space /g, where V=7, @ W@ W ®.0W® W,

At this point we have introduced the entire Haar-wavelet family : the father ¢, the mother v, the
daughters (\pf(1) =y(2"— k)), and the sons (q)f(1) =0(2"%— #)). We will now show in greater detail
how the mother and daughter wavelets are derived from the father and son wavelets by means of the
orthogonal decomposition theorem. The orthogonal decomposition theorem says if ¥ is a finite-

dimensional subspace of an inner product space #; then any »€ #'can be written uniquely as

y=w+ w, where we Wand wL e L . (This theorem can be represented by /= #'® WL) The

2 .
vector spaces V| and V,, have the "natural" bases S, = {q)ol, ¢]1} and S, ={¢02, 4)12, o, ¢32}, respectively .

Now, according to the theorem, any element of V, can be written as the sum of elements from V, and

15

; 1; ; L. ;
Vi L But neither (pol or ¢, is orthogonal to the basis element ¢ for V, . So how can ¢, (in S,) be written

as the sum of ¢ and an element w from \f L9 By utilizing the Gram-Schmidt process, it turns out that
; ; 1, s i 1
w L is the residual element (in v, 1) defined as ¢, minus the projection of ¢, onto¢.

1
1 1 1 (¢o=¢) 11 1 11 1
Thus, w =, — proj 0, =, o) % T 70Ty Thusey =gt v,

where ¢ € V jand y € Vol,
Now let's check for ¢11 € S, how can ¢11 (in S)) be written as the sum of ¢ and an element w L from

V1 2 Similarly to the previous calculation, we have

(0,-9)

(6,)

0

" 1 1 1 11 1 i
0=0, — 5¢——5\|J.Sowehave 0, —?¢+—7w.smcethe

1 | 1
w _¢1 "‘ﬁf’ﬁ_]q) 1 =¢1 -

two elements of the "natural” basis S, for vector space V| can be written in terms ofpand v, it is
evident that we would take B, = {¢, W} as an alternative basis - the wavelet basis - for V, ,
where ¢ E'VO andy € V, L. (Note that \A L is spanned by y.) Again apply the orthogonal

decomposition theorem, since V, &V, , we have /,= /| © /] 1 . Taking B, as the basis for V, , what

—_

forms the basis for /] 1 2 If we project each of the standard basis elements for ¥, onto ¥, we will see

. 2 . 2 .
what the residuals are. First we will look at ¢, €5, the projection of ¢, onto /] is

<¢02,) % l
(6, 0) 1

(¢02,”’) _
HE (v, v) ¥

o+ f = %¢+ %W.Theresidualismf’llandis

2 1 ' . 2 1
¢y - 70" }wz %q;ol . Second, ¢12 € 5,: the projection of ¢, onto 7] is

1
(o v) 7
P (v, v) LI

(o0 ,9)
(9, 0)

1
A il] L
o+ 1 W:I(IH- Iw.Theremdualxsmﬁ’I and is

16

2 1 1 1 : 7.2 o .
O - - TVY= ?lpfol . Third, ¢22 € 5‘2: the projection of ¢22 onto /] 18

47 4

2 2 I 1
<¢2,¢> <¢2,‘V) 4 411 b B el i
6 0) ¢+) V= ¢+ 1 w—z(b—I\p.Theremduallsm 7~ andis

% 1 1 1
O, ~ ¢+ Y= —\p']l. Fourth and 12:13‘[ly,q>32 €.5,: the projection ofq)32 onto /| is

4 4 2
1 1
2 2 . el :
<¢3,¢)¢+ (0,v) 4 o+ —y=Lo- Ly The residualis in 7 * and is
o 0 o) V= T W=t W Lsesi 4
2 1 1 1 1 i s y ; .
0, - Iq, 4 I"’ =- 71;;1 . HyT 8 a two-dimensional vector space. We see that it is spanned by

11 . . T .
{\|!O > ¥y } Basically, / L is spanned by y and when ¥, is written as nex Lo A L it turns out
that /] L is spanned by lpol and wll. We could keep this process going to find that the next generation of

daughters are the last four elements of a basis 2, which looks like { o, y, wol, qfll, IIIOZ, 14!12, \]!22, 1;!32} and

the process continues to spaces / with larger values of n.

While the Haar wavelets are the simplest to understand and work with, there are many other wavelet
families. As was the case with the Haar wavelets, each family is generated by a father wavelet or scaling
function ¢. Examples of such families are the /Aar wavelets, the guadratic Battle-Lemarie' waveleis, the
cubic Battle-Lemarie’ waveless, and the Shannon wavelets. Recall the relationship between the Haar
father and mother wavelets: y(x) =0(2 x) — ¢(2 x — 1). The relationship between mother and father
wavelets is unique to each family of wavelets and this relationship only applies to the Haar family.
Another wavelet family worth mentioningis the Mexican hat family. This family is different than the

others we have encountered so far because there is no simple form for the scaling function. There is,

17

however, a simple representation of the mother wavelet. It is important to note that in most wavelet

families there is no simple closed-form representation of either the father or mother functions. Instead,

the scaling functions are defined by certain properties (relations), and are then approximated.

We used the Haar wavelets above because for this wavelet family, ¢ and y are readily defined, a

property that makes them ideal for demonstrating concepts. However, the Haar wavelets are not used in
practice because they lack some important properties. Wavelets that are typically used in applications are
constructed to satisfy certain criteria. The standard approach is to first build a multiresolution analysis
(MRA) and then construct the wavelet family with the desired criteria from the MRA. A multiresolution

analysis is anested sequence - -S V., S Jy SV E V< of subspaces ofLZ(IR) (the space of all
functions whose squares are integrable on R) with a scaling function ¢ such that:

1)U, 7/ is dense in lz(IR)(if any element in a set A can be approximated as closely as we like by an

element in a subset B of A),

)N 7 ={0},

3) /(#) € 7, if and only if /(27" + #) € #, and
4){¢(z— #) },, is an orthonormal basis for /.

Sometimes, the fourth property makes it impossible for certain scaling functions to forma

multiresolution analysis. It can happen, though, that a scaling function just needs to be normalized in

order to obtain a multiresolution analysis.

A critical property of each scaling function follows from condition (4). Since {0(#— #) }isan

) orthonormal basis for 7, the set {¢(2 #— #) } is an orthogonal basis for /}. The fact that {o(27—4)}

18

is a basis for /| means ¢(7) € ¥, € /] can be written in the form ¢(t) = z ¢, ¢(2t ~ k) for some
k

constants ¢, . This should look familiar as we saw this earlier. This equation is called a dZation equation
and is crucial in the theory of wavelets. The constants {C’k} are the refinement coefficients . The fact that a

scaling function satisfies a dilation equation is a consequence of the multiresolution analy sis. This

equation provides enough information that one can proceed without knowinga sp ecific formula for ¢.

As was already mentioned, when working with a multiresolution analysis we often don't have a simple
formula for the scaling function. In these situations, however, we usually do know the refinement
coefficients. How does this information enable us to determine some characteristics of the scaling
function? One of the standard techniques to deal with problems like this is a numerical one known as the

cascade algorithm. This algorithm will provide approximations to the scaling function and is an examp le

of a fixed-point method.

A fived point of a function /'is a value « such that /(@) = a. A simple example of a fixed point method

follows, which shows how to determine the fixed point of the cosine function. Let /'(#) = cos(#). To find

a solution to the equation cos() = # start with a guess, #, of a fixed point. Let 4 =/ (z‘o) = cos(z‘o), then
compute another number 5= 7 (z‘l) = cos(4), and continue. In this way, construct a sequence
{to, 4 =f(to), , =f(z‘1),....., Py =f(z‘”),.....} that will (hopefully) converge to the fixed point of the

cosine function. The cascade algorithm is a fixed-point method, except that instead of generatinga

sequence of numbers, it creates a sequence of functions. When given refinement coefficients, this

algorithm creates a sequence of functions { j:} so that, for every value of 4 /(#) — () as7— .
Recall that ¢ satisfies the dilation equation above. If we let 7 be the function that assigns the expression

19

F(y)(9)= 20”7(2 /— 1) to any functiony, then we can consider ¢ as a fixed point of

H

We can use a computer algebra sy stem (CAS) such as Maple to create a worksheet with loops that will
perform the cascade algorithm and then plot the graph of the approximated scaling function. In the
appendix, we make use of the dilation equations for the hat wavelets, the quadratic Battle-Lemarie'

wavelets, and the cubic Battle-Lemarie' wavelets to approximate the scaling functions for each wavelet

group.

Now that we have a bit of a background in the topic of wavelets, we can see how useful they are. Since
the foundation of wavelet theory has been put in place, the field of wavelets has grown quickly over the
last decade. Aithough wavelets are best known for image compression, many researchers now are
interested in using wavelets for pattern recognition. In weather forecasting, for example, wavelets could
downsize the amount of data in the computer models that are now inuse. Also, most of this data is
redundant. The barometric pressure where we are is probably about the same as the barometric pressure
a few miles away . If the weather models used wavelets, they could view the data the same way weather
forescasters do, concentrating on the places where abrupt changes occur such as warm fronts and cold
fronts. Wavelets have a future in the movies, as well. Because the wavelet transform is a reversible
process, it is just as easy to build an image out of wavelets as it is to break it down into wavelet
components. To draw a cartoon character, the animator would only have to specify where a few key
points go and then do a reverse multiresolution analy sis, making the character look like a real person and
not a stick figure. This process could also be used in the video game industry, where they could
elixnjnafe the blocky look of today's graphics. What wavelets have done is taken the sp ecific applied

research that led to new theories and allowed scientists to look at new applications. Wavelets are an

incredibly useful topic and have a very promising future.

20

Appendix
Cascade Algorithm

21

The scaling function for the hat wavelets satisfies the dilation equation

o(2) = : 82 #) (2 #—1 j+ —;—¢(2 #—2). Using the cascade algorithm, the appro;dmatmgpfocess

o

looks like this with the finished product being the last graph:

02

22

o

0.8
6
0.4
0.2
0

23

The quadratic Battle-Lemarie' scaling function satisfies the dilation equation
1 3 3 1
w{z)= I¢(2 7 + ZQ)(Z £—1) + 1—(3)(2 r—2)+ -&—¢(2 t=23)

Using the cascade algorithm, the ap proximating process looks like this with the finished product being

the last graph:

24

1
25

<

0.84
0.6+
0.4
0.2
0
1
0.8
0.6
0.4+
024
0

Finally, the cubic Battle-Lemarie' wavelet scaling function satisfies the dilation equation

1 1 3 1 1
0(7) = —8—¢(2 £y + 5¢(2 g— 1) & Z(b(Z g=2] T —2—(1)(2 t—-_3) + —8—¢(2 #—4)

Before performing the cascade algorithm we have a function that looks like:

26

References

1. Aboudafel, Edward and Steven Schlicker. Discovering Wavelets. New York: John Wiley & Sons’,_‘ Inc,

1999.

2. Hubbard, Barbara Burke. The World According to Wavelets. Wellesley: A K Peters, Ltd, 1996.

3. Mackenzie, Dana. “Wavelets: Seeing the Forest-and the Trees.” National Academy of Sciences.

December, 2001 <http://www.bey onddiscovery .org/content/view.article.asp?a=1952>.

4. Mulcahy, Colm. "Plotting and Scheming with Wavelets." M athematics M agazine. Vol. 69, No. 5,

December 1996.

5. Nievergelt, Yves. Wavelets Made Easy. New York: Birkhauser, 1999.

6. Polikar, Robi. “The Wavelet Tutorial Part 1.” Fundamental Concepts & an Overview of the Wavelet

Theory Second Ed. June, 1996 <http /fusers.rowan.edu/~polikar/WAVELETS/WTpart 1. html>.

27

