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Abstract

The proportion of persons that are left-handed in the general population will be
estimated through the use of basic sampling techniques and subsequent analysis. A brief
introduction to sampling will be given and different sampling techniques will be
discussed. A sampling design was created and two samples were taken: one small
sample (n=10) and one large sample (n=30). The data was then compiled and analyzed.
Minitab, a major statistical package was used. Confidence intervals for the data obtained
were used to estimate the proportion of left-handed individuals in the general population.
Confidence intervals were created by exact and approximate methods and the
appropriateness of each method will be discussed. A comparison of weaknesses,

strengths, and appropriateness of each method will follow.

1. Introduction

The intention of this paper is to demonstrate the importance of appropriate
samples and subsequent analysis in estimating a proportion. Surveys, questionnaires, etc.
are all used in statistical research to obtain a representative sample of the population of
interest without having to consider the entire population. Conclusions drawn can then be
extended to represent the entire population with fairly high accuracy using confidence
intervals. This will be shown by an example of the proportion of left-handed people in
society. For illustration, two samples were obtained: a small and large one. Different
methods of analysis were then used to estimate the proportion of left-handed people from

this data. A comparison of the results will follow with an explanation of their

appropriateness and accuracy.



2. Left-handedness in Society

2.1 Historical Context

Left-handed people are one of the few minorities that still exist today with no real
sense of common identity. Discrimination is experienced differently for them than for
most other minority groups. Left-handed people are able to navigate the daily routines of
life as any right-handed person would. However, their discrimination lies in that they are
forced to adapt to a predominately right-handed world. Historically, society has favored
right-handers, through the design of simple devices like can-openers and pencil
sharpeners to complex items such as computers. Even writing the English language from
left to right is much more convenient for right-handers. It is important to note that there
are exceptions; not all cultures use devices designed for the convenience of right-handers.
For example, the Chinese writing system is vertical, making it suitable for the use of
either hand. Today, society has become more aware of these inconveniences and devices
have been specially designed for left-handed people.

The impact of this discrimination varies greatly from person to person. Usually, it
amounts to nothing more than the awkwardness of using everyday tools. However, in
some cases, severe emotional problems and serious learning difficulties may emerge.
Individual responses vary from stuttering, headaches, and behavior disorders to confusing
directions (Silverstein and Silverstein, 1977). Children who are forced to switch their
dominant hand may also be more susceptible to dyslexia and have a greater chance of

developing learning problems in school. Of course all of this depends on the child at



hand, their degree of “left-handedness,” and their reaction to this change. For most
children, there are few or no significant negative responses to switching hand preference.

When dealing with any aspect of hand preference, the question of why most
people are right-handed immediately arises. Even today there are no concrete answers to
this question. There are, however, definite advantages to favoring one hand over the
other. Everyday tasks become automatic, and a person does not have to think about
which hand they are going to use for a given task. This saves a lot of time and effort,
especially in life-threatening situations. The tendency to favor a certain hand probably
arose to reap these benefits. Despite this, the question still remains; why are most people
are right-handed?

There is still much confusion over why right-handedness is dominant and when
this preference emerged. Many theories have been offered but little evidence supports
most of these speculations. Early evidence from the Stone Age is incomplete and
lacking. The little evidence researchers possess has led them to believe that these people
lived mainly in an ambidextrous society.

Some pictorial evidence has been discovered in caves. This gives researchers a
better understanding of hand preference during ancient times. Right-handed people tend
to draw animal pictures facing to the left, while left-handers usually draw animals facing
to the right. For example, cave drawings by the San people were found in South Africa.
About 60% of these drawings are facing left. Most of these people were probably either
left-handed, or the artists of the time were mostly left-handed.

Right-handed dominance emerges during the Bronze Age. Tools and weapons

appear to be made for the use of the right hand. Again, there are many theories but no



definite answers to the question why. Evidently, prehistoric people sought conformity.
Social pressure to fit in may have influenced handedness. People who were different
than the norm were often feared and scorned. For whatever reason, the right hand seems
to be favored from this period forward. Hand preference tends to be passed down from
generation to generation. Children were taught to use tools geared for the convenience of
their parents, who were predominantly right-handed. This begins the snowball effect of
the right-hand dominance. This may be one of the many factors influencing the
dominance of one hand over the other. Records show that the Egyptians, Greeks,
Romans, and most Indian tribes were predominately right-handed although exceptions do

exist.

2.2 Handedness in Today’s Society

Although the extent of the relationship between genetics and hand preference, if
any, is not fully understood, it is clear that handedness is not completely fixed at birth.
This has increasingly been a topic of great discussion. Children often go through phases,
switching back and forth between hands or using different hands for different tasks.
Parents often have mistaken this as a permanent choice of hand preference. Handedness

is usually not determined until the child reaches about the age of five (Silverstein and

Silverstein, 1977).

3. Goals of the Study

The goal of the research conducted and the purpose of this paper is to examine

different methods of analysis for samples of different sizes and the appropriateness of the



different methods. This research is not intended to produce exact figures for the actual
proportion of left-handers in society, but rather focus on the methodology and
mathematics behind it. Therefore, the results of the actual analysis are not intended for
further use in other studies and no concrete conclusions can be made about the proportion

of left-handers in society.

4. Sampling Design

4.1 Background

Two samples were taken, a large one consisting of 30 people and a small one
consisting of 10 people. To avoid complications with Bemidji State University protocol,
only people over the age of 18 were allowed to participate in this study. On February 16,
2003, a total of 40 people at the Paul Bunyan Mall in Bemidji, Minnesota agreed to
participate in this survey. The Bemidji Mall was chosen because of its great influx of
people. As people entered the mall, every tenth person was asked their hand preference.
Because it has not yet been determined whether genetics influence handedness
(Silverstein and Silverstein, 1977), this method was chosen in order to avoid asking
members of the same family. The definition of left-handedness used in this survey was
the hand used for writing. This method created a sample as random as possible given the

circumstances and time restrictions. The data is presented in tables I and II in the

Appendix.



4.2 Potential Problems with Sampling Design

Assessing the proportion of the adult population that is left-handed is not a
straightforward problem for a variety of reasons. The first difficulty concerns the actual
definition of left-handedness. What exactly determines whether or not a person is left-
handed? There is no definite answer to this question. The percentage of left-handers
varies from one to fifty percent, depending on the criteria used to determine handedness
(Fincher, 1993). Interestingly, if one was to consider handedness to be all or nothing, i.e.
all tasks are performed with only one hand; the percentage of true right-handers would
drop significantly to about seven and a half percent. Handedness has been defined as
anything from which hand a person uses to learn new tasks to preference for completing
intricate projects. In today’s society the use of both hands has become very popular and
widely accepted. Most people favor a certain hand for certain tasks such as writing and
eating while the other hand is specifically used for other tasks such as playing sports.
Despite this vagueness, most people identify themselves as left-handed or right-handed.
The hand used for writing appears to be the deciding factor (Fincher, 1993). Most
researchers agree that in general about 10-11% of the population is left-handed. Only
one of the forty people sampled claimed to be ambidextrous. Since middle ground for the
analysis used in this paper is non-existent (i.e. a person is either right or left-handed), this

person’s response was dismissed and a new data point was obtained.

4.3 Changes in Society’s Influence
Due to BSU protocol, I only surveyed people who were over 18. A significant

number of the people surveyed appeared to be middle-aged or older. This may bias the



survey because historically people of these age groups that were left-handed were
discouraged from being so. In fact, children were often punished and forced to become
right-handed. One gentleman in particular stated that he was left-handed as a child but
was converted to being right-handed to fit the norm of society. This brings up the
interesting question of whether he was actually right or left-handed and whether
preference is determined more by genetics or society. Today, left-handedness is widely
accepted. Although it is not always encouraged, it is at least, for the most part, not

discouraged.

4.4 Other Related Factors

Other factors that may influence the outcome of the analysis of the survey data
include the area in which the survey was taken, and the time it was conducted. Since the
entire sample was taken at the Bemidji Mall, it may not be a representative sample of the
society as a whole. The survey was conducted from about 2:00 to 4:00 p.m. on Sunday,
February 16, 2003. During this time period certain cohorts of people may frequent the
mall in greater numbers than others. It has also not yet been determined how much, if
any, gender, age, and cultural/genetic background, or geography influence a person’s
hand preference. Therefore, there may be hidden biases and related factors that are
unaccounted for in the analysis. For example, in this survey, I noticed that many of those

who participated were from an older generation which probably biased the data.



5. Estimating a Binomial Proportion

5.1 Confidence Intervals

Confidence intervals are used to estimate an unknown parameter in statistics. For
example, when estimating the unknown proportion of left-handed people in the general
population one typically starts with a point estimate. The point estimate might be 11%.
This estimate is in all likelihood incorrect. Therefore, statisticians construct a confidence
interval such as (9%, 13%). Confidence intervals give a range of probable values for the
parameter being estimated.

Confidence intervals are always given along with a level of confidence. This is
expressed as a 100(1 — &) % confidence level with 0 < a < 1. In the previous example,
(9%, 13%) might be a 95% confidence interval. This means 0¢=0.05. A 95% confidence
interval can be interpreted as an interval that captures the true but unknown value of the
parameter of interest 95% of the time. In other words, if 100 different samples were
obtained and 100 different 95% confidence intervals were created, each estimating the
same unknown parameter, 95 of the 100 would have captured the parameter within their
bounds and 5 would have not captured the parameter. Therefore, 95 would be “correct™
and 5 would be “incorrect.” The problem is that we never know if we have calculated a
“correct” interval, we only know the level of confidence that our interval is correct.

Many methods exist for creating confidence intervals, each with their own
advantages, disadvantages, and computational complexity. The survey data will be
analyzed by computing two different types of confidence intervals for a binomial

proportion. A comparison of these methods and the author’s recommendations will



follow.

5.2 Choice of Sample Size

For this paper, a sample of n=10 was obtained to illustrate confidence interval
methodology using a small sample size. Samples of sizes in the range of 10 are very
common in many scientific fields. The Clopper Pearson method will be used to illustrate
the small sample. A sample of size n=30 was obtained to illustrate confidence interval
methodology using a large sample size because textbooks commonly recommend a
sample size of at least 30 when using the normal approximation method to construct

confidence intervals. The normal approximation method will be illustrated in this paper.

5.3 Approximate and Exact Methods

All confidence intervals can be classified into two categories: approximate and
exact confidence intervals. The accuracy of approximate confidence intervals is
dependent on the true, but unknown value of p, the population proportion. For a given
100(1 — &) % confidence level with 0 < a < 1, an approximate confidence interval method

will necessarily result in probabilities below the desired level of a for one or more values

of the unknown parameter p. More precisely, in£ P(L,<p<U,)<l-o,where L,
pE

stands for the lower endpoint of the confidence interval, U stands for the upper endpoint

of the confidence interval, and € is the parameter space. Therefore, a practitioner using
an approximate method cannot be certain that they have created a confidence interval

with the level of confidence that they desire. This uncertainty often makes it difficult to

make any concrete conclusions.

10



Exact methods ensure that a confidence interval is always at least at the desired
level of a. More precisely, these confidence intervals have the property that

in£ P(L, < p<U,)=1-c. Here the practitioner is assured to have at least 100(1 - o) %
pe

confidence.

Even though exact methods seem to have a higher confidence, there are some
disadvantages. One drawback of exact methods lies in that they may at times be too
conservative. For example, if a 95% confidence interval is desired, for a given value of
p, an exact method may yield a 99% confidence interval. Then, the interval will be
unnecessarily conservative. As confidence levels increase, the width of the interval also
increases. This implies that an exact method that produces confidence levels greater than

or equal to 100(1 — o) % but as close to 100(1 - o) % as possible are the most desirable.

5.4 Normal Approximation Method

Let p be the unknown proportion of people that are left-handed. Let Y be the
random variable, which in our case, is the number of people that are left-handed in a
sample of size n. Using the method of maximum likelihood estimation (Hogg and Tanis,

2001) the maximum likelihood estimator (MLE) of p is p =Y /n = number of successes /

number of trials. A binomial distribution has mean p=np and 6°=np(1-p). To normalize

this expression take the random variable ¥ minus the mean p divided by the standard

. ; . Y4 o
deviation o to obtain the expression dJ——L . From the Central Limit Theorem, we

np(l-p)

Y—np

know that ———
Jnp(l-p)

has an approximate N(0,1) distribution. Dividing the top and
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Y
—_—— p —
bottom by n, we have —I-——— . Note that M

Np(=p)in n

is the standard error of the

-p

¥
estimator. Because we know the approximate distribution of \/(;2——)7’ we can
pl=p)/n

create a probability statement dependent on a given value of a. Therefore, we have the

Y
—=p

following equation: P(~z,, < ——f—=
Vpl=p)/n

a standard normal distribution resulting in a tail probability of @/2. Since we are

< z,) =1—a, where z,, is the z value from

interested in the confidence interval for p, we will now solve this equation for p to create

an approximate 100(1-a)% confidence interval. Solving for p results in the following

p(l-p)
n

endpoints for our 100(1- @)% confidence interval: p * 2 . Since the value
2

of p is unknown, in order to calculate the endpoints of the confidence interval we

substitute the MLE p in for p to arrive at the final 100(1-a )% confidence interval

formula for the normal approximation: p * Z‘pr_(l—_p) . All confidence intervals have
2 n

the general form: (point estimator) +z,, X (standard error of the estimator) (Mendenhall,

et al, 1999).

The MLE is a function of the unknown parameter p that locates the value of p
most likely to have created the sample values. Using the MLE to estimate p, we begin

with a random sample of n independent observations: X el s v vl § X L LX j,Vi #J.

Each X; has an approximate Bernoulli distribution, meaning every trial has one of two

12



possible outcomes, success or failure. Let ¥ = ZX . with each X, ~ Bernoulli(p). Then

Y, ~ Binomial(n, p). Consider the joint probability density function (pdf),

ﬁ[ L ][pi)}- (1 = p)”’i)'i 1 The
Vi

i=1

n n . wy,
P(K:)’sz:}’za--Yn=yn)=H , (- p)" =
i=1 \ Y

i=l

Likelihood function created is L(p) = H( " J[pz"" (1-p)" =" ] We want to maximize

the function L(p) by taking the partial derivative with respect to p. Using calculus we
will find the critical points and determine whether they are maximums or minimums.

Since it is often easier to take derivatives of log functions, consider

In L(p) = IH{H[:](IQEJ’. - p)ﬂ-zy.‘ )} = IUH{ J Z ln p+t (n— Z(y( ))]I’l(l p)

Since the natural log is an increasing function, it will have the same maximum as L(p).

Therefore, we need only to find the maximum of this function. The partial derivative of

In L(p) with respect to p is: diln L(p)=0+=— Z o (—Izy—) To find the critical
p -p

points, set the partial derivative equal to zero:

=Y.

(A-p)D Yy, —pn=2y)= 053" Fir— P yi—pn+pYy,= 0:>p_Z’:Iy.

Now, we need to show that p is a maximum. We will prove this by showing that the

second partial derivative is negative. Rewrite the first derivative as

. o . = — ;
ilnL(p)=&+n—z‘y'. Then lnL(p)— Zzy' - Z);' Since we found

p-1 dp P (B=1)

the point estimator of p to be y, we can rewrite this expression as

13



Sy, =Yy —G-D2Yy -7 n-Yy,
gy, R _ZJZ" = - thy'_ Y 2(n Zy‘)<0_ The denominator of this
y (y-1) y (y-1

expression is always positive as it consists of multiplying two squared numbers. Since

0< Z y, <n, the numerator is negative as the first term is negative and the second term

is either negative or zero. Therefore, the second partial derivative is negative and p is a

maximum.

The normal approximation method is the m(.)st commonly used technique for
computing confidence intervals when estimating proportions, as it is fairly
straightforward and easy to use. Approximate methods will produce decent results when
np and n (1 - p) > 5 (Mendenhall, et al, 1999). This means that the normal approximation
method will work well when the sample size is sufficiently large and/or the probability is
not too small or too large. A problem that immediately arises for my sample is that p is
unknown. A search of the literature reveals that the best approximation available of the
true proportion of left-handers in the general population is around 11 percent. For
example, in the sample size of n=10 case, np = (10)(0.11) = L.1 and n(1 - p) = 10(0.89) =
8.9. One of these is unacceptable. When n=30, np = (30)(0.11) =3.3 and n(l - p) =
30(0.89) = 26.07. One is still unacceptable, although greatly improved from the n=10

case.

5.4.1 Assumptions

Confidence intervals for the parameter p, using the two data sets obtained (n = 10
and n = 30) will be calculated for a value of a.= 0.05. This will resultin a 95 %

confidence level. The value of o = 0.05 was chosen because it is the most common value
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used in science. The following additional assumptions will be made: the sample is from a
binomial distribution and the observations are all independent of each other. Since we
are working with a binomial random variable there are only two outcomes, Success or
failure. Since we are interested in left-handedness, we will arbitrarily define success as

being left-handed and failure as being right-handed.

5.4.2 Example Using Large Sample of n=30

Most textbooks state that the normal approximation method will yield desirable
results with a sample of size 30 or greater. This method yields results closer to the
desired 100(1 - o)) % confidence level the larger the sample size because of the central

limit theorem. The central limit theorem states that as n increases the more normally

distributed % becomes and therefore, the closer the approximation method gets to
np(l-p

the desired level of confidence.

Thirty different people were asked their hand preference. As mentioned earlier,
one person claimed to be ambidextrous. That piece of data was discarded and replaced
by a new one. The random variable Y is defined as the number of success, or left-handed
people observed. The results of the survey are, n = 30, y =4, and the point estimator for
pisp =4/30=0.133. Notice that np = (30)(4/30) =4 and

n(l— p) = (30)(1 - 4/30) = 26, still unsatisfactory under the requirements that np and

n(1-p) be greater than 5 as was stated earlier.

The confidence level of a = .05 results in s 1.96. The 95% confidence
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; - p(1—p _ _ ; . ;
interval formulais p+ 2 pl=p) . Putting the respective values into this equation
2 n

. Simplifying the formula yields the 95%

results in 4/30+1.96 ‘] 4/ 30)(310— 4/30)

confidence interval [0.0117, 0.2550]. We can state that we are 95% confident that our
confidence interval of [0.0117, 0.2550] captures the true but unknown proportion of left-
handers. This method produced an approximate 95% confidence interval of the true but

unknown parameter p.

5.4.3 Example Using Small Sample of n=10
When working with small sample sizes, the normal approximation method
oftentimes yields undesirable results. This will be demonstrated using the n = 10 sample.

One of the ten people who were asked their hand preference claimed to be left handed.

Therefore, n = 10, y = 1, and the point estimator for p is p =1/10=0.10. As before, for

a =0.05, Bl = 1.96. The resultant approximate 95% confidence interval for n = 10 is

[-0.0859, 0.2859]. Notice that the lower bound for the confidence interval is less than
zero which is unacceptable because a proportion is necessarily between 0 and 1. It is
interesting to note that software programs, such as Minitab, will just round -0.0859 to 0 to
avoid this problem. This is somewhat misleading as a practitioner may be unaware of
this error resulting from the normal approximation method. The confidence level is also
very questionable because the central limit theorem will not produce a good

approximation for n < 30 (Hogg and Tanis, 2001).
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5.4.4 Conclusions Concerning the Normal Approximation Method

Confidence intervals with a confidence of 95% were created for n=10 and n=30.
The normal approximation method produced erroneous results for the n=10 sample size.
The confidence interval for the n=30 sample contained endpoints between 0 and 1, but
the level of confidence may not be 95%. For small samples more advanced techniques
should be used and one is illustrated in the next section. For samples of 30 or more,
according to the normal approximation method, should be used cautiously as the

confidence level is only approximate.

5.5 Clopper Pearson Method
There are many exact and approximate alternatives to the normal approximation
method that will yield better results for small sample sizes. This paper will focus on the

oldest and most commonly used exact method, the Clopper Pearson Method (Clopper and

Pearson, 1934).

5.5.1 Example Using Large Sample of n=30 and Small Sample of n=10

For a sample size of n=30 and y=4, the Clopper Pearson method yields an exact
95% confidence interval of: [0.035, 0.320] and for a sample size of n=10 and y=4, the
Clopper Pearson method yields an exact 95% confidence interval of: [0.0025, 0.445].
The interval calculations were performed on Minitab. When Clopper and Pearson
developed this method there were no computers or calculators. The method used by
Clopper and Pearson in 1934 will be illustrated in section 5.5.3. Because this is an exact

method we can state that we are 95% confident that [0.035, 0.320] captures the true but
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unknown proportion of people who are left-handed given our sample of size n=30 and we
are 95% confident that [0.0025, 0.445] captures the true but unknown proportion of
people who are left-handed given our sample of size n=10. We know that the level of

confidence can be no less than 95% for each of these intervals.

5.5.2 A Comparison of the Normal Approximation and Clopper Pearson Methods
Below is a table compiling the information produced from each of the two

methods for 95% confidence intervals for sample sizes of n=10 and n=30.

Sample Size Method Interval Width of Interval
n=10 Normal Approximation | [-0.0859, 0.2859] 0.3718
n=10 Clopper Pearson [0.0025, 0.445] 0.4425
n=30 Normal Approximation | [0.0117,0.2550] 0.2433
n=30 Clopper Pearson [0.035,0.320] 0.285

All methods of creating confidence intervals have the following two properties:

1) Confidence interval width increases as the sample size decreases.

2) Confidence interval width also increases as the level of confidence increases for

all methods of creating confidence intervals.

Property (1) is true because the set of probable values for the unknown parameter p
increases as the sample size decreases. In other words, the smaller the sample size, the
less we know about the population parameter p and the more uncertain we are of its
value. Property (2) is true because if we want increased confidence we must accept a

larger set of probable values for the unknown parameter p. In the extreme case, a 100%
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confidence interval for p is (-eo, o).

Note that for each sample size the width of the Clopper Pearson interval is greater
than that of the normal approximation method. We know that the Clopper Pearson
intervals are exact (i.e. the level of confidence is at least 95%) and the normal
approximation intervals are not. Given (2) above, this implies that the level of

confidence for the normal approximation intervals is less than 95%.

5.5.3 An Example of How Clopper and Pearson Computed Confidence Intervals in 1934

The chart reproduced below (Clopper Pearson, 1934) demonstrates the method
Clopper and Pearson used to present confidence intervals in 1934. Today, much of the
work that they did by hand can be quickly done using statistical software such as Minitab.
Notice that this particular chart is for creating confidence intervals with a confidence
coefficient of 0.95 or a confidence level of 95%. An example will be given to
demonstrate the technique Clopper and Pearson used to create this chart.

Suppose we let o= 0.05, p = 0.6 and n = 10. Looking at the chart below, at p=0.6

the values of the confidence interval endpoints of which we want to find are marked with

diamonds.
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410 The Use of Confidence or Fiducial Limits
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We want to find Ly and Uy of the confidence interval that would correspond to p =
0.6. Essentially, we want to find Ly and Uy so thatP(Ly <p< U},) = .95, an exact 95%
confidence interval. Looking at the chart we have an idea of where Ly and Uy should lie

(Clopper and Pearson did not). Since we are given that p = 0.6 we have the following:

P(L, < 6< U},) =.95. (Insert p = .6)
P(10L,<6<10U,)=.95 (Multiply by 10)
P(Y £6<Yy)= .95 (Y and Yy are values between 0 and 10)

P(y<Y;)=.025P@y=Yy) =.025 (Assume equal tail probabilities)
Now that we have the equation in this form we can solve for Y; and Yy.
We will start by finding the value of Y;. Looking at the chart, we have the advantage of

knowing the general area of where our value should lie. We can see that Y, lies
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somewhere between the values 2 and 3. For Y, =2 we have:

2

10
Z( ].6" (1-.6)""” =0.01229 . Since 0.01229 <.025, we know that Y, =2 is not large
¥

y=0

3.(10
enough. For Y, =3 we have: Z( ].6" (1-.6)"" =0.0516. Since 0.0516 > .025, we

y=0

know that Y, =3 is too large. Therefore, the value must lie between Y; =2 and Y, =3.

To find the values of Y; and Yy we will use linear interpolation. For Y, we need
to interpolate between the points, (2, .01229) and (3, .0516). The general equation of a
line is y — y; = m(x — xj), with m= (y2 — y2)/(x2 — x;). In our example, m= (0.0516-
0.01229)/(3-2) = 0.03913. Then, the equation of the line is y - 0.0516 =0.03913 (x - 3).
Solving for y, we have: y =0.03913x - 0.06579. Letting y = 0.025 implies x = 2.32 which
implies that ¥, = 2.32. Then, if Y, =2.32, we know that 2.32 = 10Ly  therefore Ly =
0.232 as is given on the chart by the left diamond.

To find the value of Yy we will use the same method of interpolation. Again,
from the chart we know that Yy, is between 9 and 10. For Yy =9 we have:

10

10
Z( j.6y (1-.6)'"" =0.04636 . Since 0.04636 > 0.025, we know that Y =9 is too

y=9

10

10
large. For Yy =10 we have: Z( J.6y(l— 6)'° =0.00605 . Since 0.00605 < .025, we
y

y=10
know that Yy =10 is too small. Therefore, the value must lie between Yy, =9 and Yy =10.
For Yy, we need to interpolate between the points (9, 0.04636) and (10, 0.00605).

The slope m = (0.00605 - 0.04636)/(10-9) = -0.04031. The equation of the line is y -
0.00605 = -0.04031(x-10), or simplified is y = -0.04031x + 0.40915. Again, let y =0.025.

Then, solving for x we have x = 9.5299, which implies Yy =9.5299. If Yy =9.5299, then
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9.5299 = 10Uy implies that Uy = 0.95299 as is given in the chart by the right diamond.

Therefore, from this method we know that Ly = 0.232 and Uy = 0.95299. The
confidence interval we created is (0.232, 0.95299).

Today, with the aid of computers and advanced calculators, the method of
computing confidence intervals has been transformed. What used to involve extensive
hand calculations can now be done almost instantaneously with the technology available.
Charts are no longer used to display confidence intervals, rather a computer or calculator

will calculate them for a given sample and level of confidence.

6. Conclusions

The history of left-handedness and the difficulties associated with estimating the
proportion of the general public that is left-handed was explored. There is no consensus
as to the true proportion of people that are left-handed. To explore statistical methods of
estimating this unknown proportion p two samples were taken and analyzed using two
methods of creating confidence intervals.

As demonstrated through the use of the two different methods, an approximate
and an exact method, we see the importance of choosing a method based on sample size.
For small sample sizes (anything below 30) the exact method as proposed by Clopper and
Pearson is superior to the normal approximation method because we can be assured of at
least a 100(1 — a) % level of confidence. For large sample sizes the normal

approximation methods yields acceptable confidence intervals with an approximate 100(1

— o) % level of confidence.

Before the advent of computers the normal approximation method was an easy to
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use satisfactory method. But, today, given the ease of which Clopper Pearson intervals
can be calculated, there is really no reason to continue to use the normal approximation

method, except as an easy way to comprehend examples in introductory statistics courses.
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Appendix

Table I: Sample of size 30 taken on 16 February 2003

I. right 11. right 21. right
2. right 12. right 22. right
3. right 13. right 23. right
4, right 14. left 24. right
5 Left 15. left 25. left

6. right 16. right 26. right
7. right 17. right 27. right
8. right 18. right 28. right
0. right 19, right 29, right
10. right 20. Right 30. right

Summary: 4 left-handers and 26 right-handers

Table II: Sample of size 10
obtained on 16 February
2003

right

right

right

right

right

right

right

right
left
10. right

ol o =] o vl & wf of ~

Summary: 1 left-hander and
9 right-handers
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