Compound and Chaotic Motion in the Double Pendulum System

David P. Gurney
Senior, Physics/Honors Program
Bemidji State University

This thesis explores the behavior of the double pendulum system using
the computing power of Mathematica. Specific attention is paid to the
system’s sensitivity to initial conditions, a characteristic of chaos. The
double pendulum system is a good system through which to study
chaotic motion because it displays both compound and chaotic motion,
depending on the amount of energy present in the system. Poincare
sections are determined for a variety of initial energies, allowing for
visual representation of the regions of compound and chaotic behavior.
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Introduction

The double pendulum system consists of two simple pendula, where the
second pendulum is attached to the end of the first, with each pendulum length having
a mass attached to the end. For the purposes of this thesis the pendulum lengths will
be considered as massless, so that the entirety of systems mass resides in the two
masses contained on the end of each pendulum length. Frictional forces are also
ignored for purposes of simplification. The system is acted upon by the gravitational

acceleration g. A diagram of the double pendulum system is provided below:
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Figure 1: Diagram of a double pendulum system

There are multiplicities of variations of the double pendulum system. This
thesis deals only with one of these varieties. In addition to the simplifications noted
above, the double pendulum system studied in this thesis is un-driven and un-damped.
Also, of the six parameters that can be seen in the figure above, this thesis deals

exclusively with variations in & and 6.

The double pendulum system exhibits rich dynamical behavior. This makes it
a perfect candidate for the study of chaotic motion, as it provides the quintessential
example of a simple physical system that can display surprisingly complex motion

under certain conditions.'

Lagrangian Mechanics

Isaac Newton described the first formulation of classical mechanics in the 17"
century. Newton explained that the motion of a system could be described by three
parameters: position, mass, and force.* When describing the motion of any system
one must solve for the time-varying forces involved."® This approach can become

cumbersome when dealing with systems such as the double pendulum. Even to



describe the motion of a single pendulum system requires solving a large number of
equations that account for the forces that work to maintain the path of the pendulum.
Joseph-Louis Lagrange developed a simpler, and significantly more general approach
in 1788.% Lagrange replaced Newton’s rather tenuous notion of forces with the more
intuitive and rigorous notions of energy and momentum. Lagrange also introduced
generalized coordinates (discussed in greater detail below) to classical mechanics-a
method that makes the analysis of a system’s motion much simpler and more
intuitive.® Although the derivation and manipulation of Lagrange’s mechanics may
require a greater degree of mathematical abstraction, the analysis of a system’s

motion becomes significantly more generalized under Lagrange’s system.”

Generalized coordinates

The analysis of a system’s behavior in classical mechanics is greatly
simplified through the use of generalized coordinates.’ Rather than rely on a system
of coordinates whose descriptions of motion are dependent on one another,
generalized coordinates allow us to choose a system of coordinates that are
fundamentally independent and still allow for a complete description of the system’s
motion.” For the double pendulum, without the use of generalized coordinates we
would be required to describe the interdependence of the x and y coordinates of the
system and the accompanying time-varying forces. By choosing a set of appropriate
generalized coordinates we can eliminate theses forces from our calculations of the
system’s motion. It is convenient for the double pendulum system to choose our
generalized coordinates as 6 and 6, the two independent parameters that most
simply describe the motion of the system at any given time. Via this choice of
coordinates we have reduced the description of a system that in Cartesian coordinates
would require four coordinates (x, y1, X2, ¥2) to only two (8, &), which matches the
system’s number of degrees of freedom. The transformation of the Cartesian

coordinate system onto the generalized coordinate system is as follows:

(x1, 1) = (lisin6h, l1cos 6))



(x2, ¥2) = (L1sin6) + LsinG, [icos6) + Lcos )

Euler-Lagrange equations

In order to derive the Euler-Lagrange equations necessary for our study of the
double pendulum system we must begin with a description of the calculus of
variations. A general principle of the calculus of variations is the determination of
extremum solutions, for example, the shortest distance or time between two points.15

To begin, we wish to determine the function y(x) such that the integral:
J =sz{y(x),y’(x);x}dx

is an extremum."® We then vary the function y(x) until an extremum value of J is
found. This means that if a function y = y(x) gives the J a minimum value, then any

neighboring function, no matter how close to y(x), must make J increase. We define a

neighboring function as:
y(a,x) = y(O,x) + an(x)

where we give all possible functions y a parametric representation y = y(a,x) such
that, for =0, y = (0, x) = y(x) is the function that yields an extremum for J."* n(x) is
some function of x that has a continuous first derivative and vanishes at x; and x,.
This is because the varied function y(a, x) must be identical with y(x) at the endpoints
of the path: n(x;) = n(x2) = 0. This explanation of extrema and neighboring function

is most easily understood visually:



¥(x) + an(x)
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Extremum path, y(x)

Figure 2: The function y(x) is the path that makes the function J an
extremum. The neighboring functions y(x) + an(x) vanish at the
endpoints and may be close to y(x), but are not the extremum."

It follows that the integral J becomes a functional, which is a function that takes a

vector as its argument or input and returns a scalar, of the parameter o:

J(a)=L?f{y(a,x),y'(a,x);x}dx

The condition that the integral must have an extremum is that ./ be independent of &

in first order along the path yielding the extremum (o = 0):

a
da

=0

a=0

for all functions 7)(x). Therefore:
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So, we have:
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Since 7(x;) = n(x2) = 0. Although the integral appears to be independent of ¢, the
functions y and y” with respect to which the derivatives of fare taken are still

; a.J : .
functions of & But —| =0 for the extremum value and #(x) is an arbitrary

oa o

function, so the integrand must itself vanish for a = 0.> 5 We now obtain the Euler-

Lagrange equation where y and )’ are the original functions, independent of a:

Chaos

The irregular and unpredictable time evolution of many nonlinear systems has
been dubbed ‘chaos’.> However, a true definition of chaos has yet to be agreed upon
by the scientific community.” In addition to the above definition, perhaps the most
common description of chaos is a system that shows extreme sensitivity to initial
conditions.” For instance, weather systems are considered to exhibit chaotic behavior
due to small variations in a local weather system having the potential to cause major
changes in weather across the globe. This is often termed ‘the butterfly effect’, a
reference to the minute amounts of wind generated by the movement of a butterfly’s
wings that could lead to the development of some drastic weather pattern, such as a
hurricane, on the other side of the globe.” In terms of pendulum systems, chaos only
becomes apparent for large energies of the system. In other words, if the energy is
small enough that we may use the small-angle approximation to determine the
systems motion, we can be sure that chaos will not present itself. However, if the
energy is increased beyond this point, complex behavior in the system becomes
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common, and for certain energies chaos may develop.” What is so interesting about



chaos is its unpredictable nature. For instance, if a pendulum exhibited simple
behavior for an initial energy of .3, complex behavior for energies .4, .5, then for an
energy of .6 the system may suddenly become chaotic only to return to simple
behavior for an initial energy of .7. This situation becomes even more pronounced in
a more complex system such as the double pendulum’®, where motion is often
unpredictable, as can often be seen with the naked eye. Determining the initial
conditions that lead to chaos within a system can be very important. Consider an
amusement park ride modeled on the double pendulum system. It would be
extremely important for the designers and operators of the ride to be aware of what
initial energies lead to chaotic behavior so that they may either be sure to avoid these
initial conditions, or implement safety systems that take the potential of deterministic

chaotic motion into account.

Poincare sections

Henri Poincare (1854-1912) invented a technique to help visualize the
behavior of dynamical system’s.”> Poincare’s method was to take a stroboscopic
view of a dynamical systems 3D phase diagram and intersecting the resulting diagram
at equal intervals with parallel planes.” The points at which the systems function
intersects the plane are plotted as points in 2D space.” The number of points plotted
will then correspond to the period of the system. This is enormously helpful in
determining when simple, complex, or chaotic behavior is present in the system.” A
Poincare section displaying a single point is simple because for each period the
system returns to the same position. If the Poincare section shows many points we
know that the system is complex because it does not return to the same position after
each period."” As the number of points on the Poincare section increases the system
is displaying ever more complicated behavior. As the period of the system becomes
ever larger, the number of points on the Poincare section may reach a point where
periodic behavior is no longer apparent. We would call such cases where the period
approaches infinity chaotic. Poincare sections are especially helpful under the

circumstances of chaos.’ With a traditional phase portrait projected onto 2D space, a



period approaching infinity will create a display that is essential ‘full’ of points so
that no structure whatsoever can be discerned. Poincare sections eliminate this
problem by taking mapping only the points at which the individual phase trajectories
return to the same position. Poincare sections are only helpful for systems that obey
Liouville’s theorem, which states that if a system preserves volume and has only
bounded orbits, then for each open set there exist orbits that intersect the set infinitely
often.! Poincare sections also assume the following two stipulations on the system in
question: phase trajectories do not intersect in closed dynamical systems, and the
phase volume of a finite element under dynamics is conserved.' For all of the
complicated language, Poincare sections are actually fairly easy to understand when
presented visually. Below is a diagram representing compound motion within a
dynamical system. On the left is a stroboscopic view of the phase portrait for the
system, and on the right is the Poincare section derived from the diagram on the left.
The Poincare section takes only select points from the phase diagram at an interval
determined from the period of the function in question. This reduces the complexity
of the diagram on the left to the more simple representation on the right.
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Figure 3: Left-hand side — stroboscopic view of phase diagram.
Right-hand side — associated Poincare section.”



Formalism
We define the double pendulum system from Figure [ as follows:
x = horizontal position of pendulum mass
y = vertical position of pendulum mass
6= angle of pendulum
[ = length of pendulum
m = mass of pendulum

We take the pendulum lengths to be without mass, so that the entire mass of each

pendulum is contained within a point-particle that we call m.

We now take the generalized coordinates to be 6 and 6,:

X, = I cos@
¥, ==l cos,
L !2 (:05(92 = ll 00319l +l2 cosi&?2

¥, =¥, —1,c086, = -1 cosb, -/, cos0,

And the energy of the systems is as follows:

Potential energy:
V =mgh=mgy +mgy, = —(m1 + mz)gl’l cost) —m,gl, cosb,

Kinetic energyz9

2 2 2
1 ] . 1 . 3 . .
P —my! + Emzvz2 2 —m]lf 0, + Eml 176+ [;6,+211 0,0, cos.(l'ﬁil = 92)

T=—mv'=
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So the Lagrangian is:” '®

.2

1 . .
L=T-V-= %(mi + mz)llzgl +Em29, 6, :.:05(91 —6’2)+(m] + mz)glI cosf, + m,gl, coso,

From which the Euler-Lagrange equations follow:

For 6;:

% = —(m, +m,) gl sind, - m 11, 0,0 sin(0, - 0,)

L PO m 0t m L0, cos(6, - 6,)

691

jt{ :;’]] (m +m )12 6‘;+ myl L 92 cos(B 0 ) myl 1, stm(ﬁ 6 )(é.—éz)
Therefore:
o af i) 2

E_EL BJ (m]+m2)gsin61+(ml+m2)llé|+m2lzézcos(ﬂl—62)+m2[2925in(6’]—92)=0
dJ

For 6:
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2

L 2 0,-mll Bicos(6, - 6,)

2712
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(or) o
e m 204 m 11, 0y cos(6, - 6, ) - m L 6y sin(6), - 9)(9,-92\
dttang k J

Therefore:
al. ( \ °® s o :
59—__L J m,gsing), + m,], 02+ m},0,cos(6, - 6,) = m,}, 61 sin(6, -0, ) = 0
2



Results

A Mathematica program was developed by Dr. David Bahr and I to study the
motion of the double pendulum given various values for @, and 6. An iterative

method was used that cycled between all possible combinations of &) and &, given a

specified interval of 112 . The program is set to run for 1000 seconds. Poincare

sections are generated in each case for both the first and second pendulum. 156 plots
are generated upon execution of the program. We can see from a sampling of plots
that the motion of the double pendulum is a/ways complex, and is often chaotic. A
few of the plots do not fit the pattern of the rest but instead display erratic behavior-
probably a signal of a limitation in the numerical method being utilized by the
Mathematica kernel. Certain characteristic shapes can be seen to emerge with great
frequency within the phase space of the Poincare sections, particularly the rounded
diamond shape. There are varying degrees of complexity between the various plots,
and without recourse to additional mathematical techniques, it is impossible to
determine at exactly what point the hurdle is crossed from complicated motion to
truly chaotic motion. However, a general idea of the level of complexity within the
double pendulum system for various initial conditions can be seen quite easily in
these plots. Below are a handful of examples pulled from the Mathematica program.

Values for 0, and 6 are given, as well as whether the particular Poincare section

represents the motion of the first or second pendulum.
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Future Work

Identification of chaos via Poincare sections is not an exact science. In
general, we can know that when simple curves are present in the Poincare section, an
analytic solution for the motion is possible, whereas when many complicated,
irregular curves are present, we have chaos.”> However, as we noted earlier, it is not
always easy to see the difference between simple and irregular curves (in the case of
the double pendulum, it is often easy to see). If we wish to quantify exactly where
the points of chaos begin, i.e. where numerical solutions for the motion of the system
are no longer practical, we must use Lyapunov exponen‘{s.l A detailed explanation of
Lyapunov exponents is beyond the scope of this thesis, but would represent a logical
next step in an analysis of the double pendulum.

Another method of determining visually where regions of chaos occur in a
system is through of bifurcation diagrams."> Once again, a detailed explanation is not
called for here. Suffice to say, a bifurcation diagram would essentially reduce the
entire set of plots generated by our program to a single diagram showing where along
the spectrum of values for 6, and 6, chaos occurs. The process of obtaining such a
diagram is quite complicated however, and taken together with the determination of
Lyapunov exponents, would present enough material for another thesis.

The formula by which Mathematica performs the numerical integration of the
systems motions could also be studied in greater detail in an attempt to determine the
limiting factors of the method. This could help explain the erratic behavior of certain

solutions mentioned in the results section of this thesis.
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Appendix
Mathematica code for generating Poincare sections used in this thesis:

*Solve the coupled ordinary differential equations for the given initial conditions.

Clear[poincarePend];
ml=1m2=1;g=981;L1=1;L2=1;
010=-47/12; d010 = 0; 620 = -n/2; tmax = 1000; steps = 1000000; wd = n/12;
poincarePend[m1_m2_ g, L1, L2_610_d010_ 020_ d020_ tmax_, steps_,
wd_] =
temp1 = NDSolve[
{d01[t] - 61'[t] == 0,
doz2[t] - 62'[t] == 0,
(m1 +m2)*L1*d01'[t] + m2*L2*d02'[t]*Cos[01[t] - O2[t]] +
m2*L2*d62[t]*2*Sin[01[t] - 02[t]] + g*(m1 + m2)*Sin[61[t]] == 0,
m2*L2*d02'[t] + m2*L1*d01'[t]*Cos[01[t] - 02[t]] + g*m2*Sin[02[t]] == 0,
d61[0] == d610, 01[0] == 010, d62[0] == dB20, 62[0] == 620},
{61]t], d61[t], 62[t], dO2[t]},
{t, 0, tmax}, MaxSteps -> steps
I

*Iterative structure: cycle through the various initial conditions given with the given interval and create
Poincare sections for each combination of initial conditions.

For[i=1,i<2,i++;
For[j=1,j<2,j++;
For[k =1,k < 14, k++;
For[l=1,1<2,1++;
Print[
SringForm["d61 v 61 for (610, 620,d010, d620 )", 610, 620, d610, d920]]
poincarePend[m1, m2, g, L1, L2, 010, d810, 620, d620, tmax, steps,
wd];
temp2 = Flatten[Table[{01[t], dO1[t]} /. temp1, {t, O, tmax, wd}], 1];
ListPlot[temp2, PlotStyle -> PointSize[0.01], PlotRange -> All]
Print[
SringForm["d62 v 82 for (810,620,d0610, d620 )", 810, 620, d610, d620]]
poincarePend[m1, m2, g, L1, L2,010, d010, 0620, d0620, tmax, steps,
wd];
temp3 = Flatten[Table[{02[t], dO2[t]} /. temp1, {t, 0, tmax, wd}], 1];
ListPlot[temp3, PlotStyle -> PointSize[0.01], PlotRange -> All]
d620 = dez20

I
020 = 020 + /12

I
doe10 =de10

610=010 +x/12
5



