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Abstract

In this study the effectiveness of three preemptive scheduling algorithms found in
the Linux operating system was tested. The algorithms were tested using three types of
software that college students most commonly use in their academic work and during
their free time: a word processor, a web browser, and a media player. The data that are
presented in this paper are based on an average of 100 trials for each different
combination of the three applications, done for each of the three scheduling algorithms.
These tests were run to determine which of the algorithms would work best for an
operating system used primarily by a college student. The results indicate that the three

applications perform the same regardless of what scheduling algorithm is being used.



Introduction

Operating system performance is an important topic of research. One of the main
components of an operating system that performs well is the process scheduler. The
scheduler is responsible for determining which processes should run on the processor and
for how long. Scheduling is important because when a process is running on the
processor, it is allocated resources by the operating system so it can complete its task
effectively. These resources are important for all of the processes wanting to run, so it is
important that the scheduler is coded so that the resources are allocated correctly, fairly,
and efficiently. There are three main areas that the scheduler focuses on. The first is
maximizing the number of processes that finish their tasks to completion, also known as
throughput. The second is minimizing the amount of time it takes for said process to
finish its task. The final important responsibility is making sure that each process is
scheduled fairly. All three of these responsibilities are important to each other and to the
operating system as a whole. Minimizing the time it takes for a process to finish allows
more processes to finish their tasks, while the fairness of an algorithm makes sure that
every process has time on the processor based on that process’ importance and priority.

This may seem like an easy task, but maintaining the balance among fairness,
throughput, and completion time is what makes developing scheduling algorithms
difficult. Affecting one of the three areas, could lead to a decrease in efficiency in
another, or lead to the entire scheduler to fail. Most of the time, a poorly designed
algorithm leads to the errors of indefinite postponement or deadlock. These are two of
the cardinal sins of operating system development. Deadlock occurs when a process

waits for an event that will never occur while holding resources needed by other



processes. If the algorithm is not designed to handle this possibility, the process will
never give up its resources on the processor, blocking other processes from using the
processor. Indefinite postponement occurs when some processes keep getting processor
time ahead of another process, forcing it to wait and not gain access to the processor.
The poor prioritizing of processes usually cause this issue. If a process with a low
priority is waiting to use the processor, processes with higher priority could keep being
given processor time ahead of the low priority one. This effectively postpones that
process from running its task to completion, sometimes indefinitely.

Many different scheduling algorithms have been developed not only to effectively
combat deadlock and indefinite postponement, but also run efficiently on systems with
different computing requirements. An olperating system used for database work may
need a different scheduler than an operating system in a college student’s laptop. While
there are many scheduling algorithms currently in use, the two most common categories
of schedulers are preemptive or non-preemptive. Preemptive scheduling simply means
that a process that is already running can be “kicked off” the processor to make way for
another process. Non-preemptive is the opposite; a process remains on the processor
until it finishes execution without interruptions (Deitel, Deitel, and Choffnes 333).

Review of Literature

Because an operating system scheduler an its performance are so important,
numerous scholars have proposed various operating system features and tested them for
other uses, as well. All of these variations are more complicated than this experiment,
but they provide a solid basis for what has already been done and the variety of results

that arise. It is not uncommon for these types of experiments to be inconclusive. They



may be inconclusive because affecting one portion of an OS could interfere another
section of code. As stated before, developing a scheduling algorithm for an operating
system is not a perfect art and no perfect solution has been developed for all scheduling
problems. Some of these experiments had this problem, as well.

In Preemptive online scheduling with reordering, Dosa and Epstein created an
experiment to test how preemptive scheduling algorithms worked on-line when the
processes came in one-by-one. They hypothesized that a certain buffer size would help
bring the processor time down to a certain threshold using preemptive scheduling. Their
results showed that for a buffer of a certain size, the competition among processes was
one, meaning that processes were not constantly getting preempted on the processor.
This result showed that this algorithm successfully reduced the processing time by
reducing the number of preemptions. |

He, Zhang, and Zhou attempted to solve the problem of preemptive scheduling
with two uniform machines in their article Optimal preemptive online algorithms for
scheduling with known largest size on two uniform machines. For their experiment, He et
al. assumed complete knowledge of the deadlines to finish each job, which is often
helpful when scheduling. Using this knowledge, their goal was to maximize the
throughput of both machines. One of the techniques they applied to their scheduling
algorithm was randomization. Unfortunately, their experiment failed to produce the
desired result, and they were unable to maximize throughput on both machines.

Dosa and He tested a problem similar to the one attempted by He, Zhang, and
Zhou. The difference was that this experiment dealt with both preemptive and non-

preemptive strategies, and introduced the idea of job rejection. Their experimental setup,



outlined in Preemptive and non-preemptive on-line algorithms for scheduling with
rejection on two uniform machines, was also similar to that of the experiment conducted
by He, Zhang, and Zhou. Their method was to start with an optimal scheduling solution
and improve upon it if possible. They increased the lower bound of the non-preemptive
strategy and came up with an overall better optimal solution for the preemptive scheduler.

Sevastyanov, Sitters, and Fishkin also looked at a preemptive scheduling problem
in Preemptive scheduling of independent jobs on identical parallel machines subject to
migration delay. Their goal was to minimize the makespan using preemptive scheduling
on multiple parallel processors that allows migration of processes. (Makespan is a
common term in operating system development. It simply means the time it takes for a
process to finish completely from the time it initially started.) To carry out the
experiment, they put a threshold on the number of process migrations for each trial, In
doing this, they have developed an optimal solution for, at most, m-1 migrations where m
is the number of parallel machines. Their results also yielded a linear algorithm for when
there are two migrations.

Instead of looking at a preemptive scheduler, Paletta and Pietramala were
interested in finding an optimal solution for using a non-preemptive scheduling algorithm
for n processes on m different processors. In 4 new approximation algorithm for the
nonpreemptive scheduling of independent jobs on identical processors, they analyzed the
average-, worst-, and best-case scenarios and attempted to find a new algorithm to
describe this behavior. They managed to find a new algorithm that runs in O(n
log(n)+mn) time. In computer science, Big O notation is used to describe an upper bound

on the worst-case performance of an algorithm. Generally, O(nlog(n)) translates to a



relatively good algorithm, in terms of performance. So, O(n log(n)+mn) is slightly
worse than O(nlog(n). Paletta and Pietramala were surprised that they found an
algorithm that performed that well.

The research group of Chekuri, Motwani, Natarajan, and Stein look at the
problem of non-preemptive scheduling allowing release dates, parallel machines, and
precedence restraints, all while trying to minimize completion time. The release date of a
process is the time at which it is sent to a processor. They consulted other experiments to
help them come up with some algorithms to test their schedulers. Their results showed
that they had an optimal on-line algorithm, and their algorithm is useful for parallel
machines. These results were published in Approximation techniques for average
completion time scheduling.

Ebenlendr and Sgall presented a unified optimal algorithm for preemptive
scheduling on uniformly related machines in their work, Semi-online preemptive
scheduling: one algorithm for all varian.ts. To back up the claim of an optimal algorithm,
Ebenlendr and Sgall compared it to other algorithms that attacked the same problem. The
results showed that their algorithm worked for all semi-online restrictions, adapting to
create an optimal algorithm for any restrictions applied to it.

The problem studied in Algorithms for the single machine total weighted
completion time scheduling problem with release times and sequence-dependent setups
has not been researched as thoroughly as other scheduling problems. Chou, Wang, and
Chang looked at the problem of scheduling n jobs on a single machine to minimize the
completion time in the presence of sequence-dependent setup times and release times.

This simply means that the order of the processes matters. They created two new



algorithms to evaluate the performance. The two algorithms performed in O(n") and
O(n’) time, which gave the researchers ideas as to what to improve upon in the next
study. While O(nlog(n)) and O(log(n)) are good performance times for algorithms, any
algorithm with performance times that exceed O(n”) needs to be looked at again and, if at
all possible, rewritten to improve its performance. Sometimes this is not possible, but
Chou, Wang, and Chang are hoping that they can achieve this in the future.

Reisi and Moslehi took a different approach to scheduling. In Minimizing the
number of tardy jobs and maximum earliness in the single machine scheduling using an
artificial immune system, the group attempted to find a scheduling algorithm that
maximizes earliness in the processes and reduce the number of tardy ones. The
uniqueness of their study stems from their use of data from an artificial immune system
that was used in anatomy and biology research. The results show that this immune system
algorithm is more favorable than other methods that have been used to solve this
problem.

A problem found in scheduling is creating an algorithm that correctly determines
if a task has performed correctly, or if it should be allowed to use the processor again to
fix mistakes that it made. In Approximation algorithms for multiprocessor scheduling
under uncertainty, Lin and Rajaraman looked at this very problem. They looked at
certain cases to help minimize the run time and makespan. Their work resulted in an
algorithm that ran in O(log(n)) time, but only for some of their specific cases. After all of
the cases were tested, the algorithm performed, on average, in polynomial runtime.

In Preemptive scheduling of two unrelated processors, Gonzalez, Lawler, and

Sahni tried to make an algorithm for preemptively scheduling n jobs on m unrelated
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parallel processors. The results of this experiment are quite good. Gonzalez, Lawler, and
Sahni present an algorithm that, on average, has only two preemptions for each trial. The
lower the number of preemptions, the less time spent on changing processes. The
algorithm also runs in linear time, which is a very good performance time.

In Single machine scheduling to minimize total weighted late work, Hariri, Potts,
and Wassenhove attempted to use preemptive scheduling to schedule a single processor
machine where each process has a “due date” and they must minimize the number of late
processes. Their “due date” is like a deadline that the Deadline algorithm (discussed
later) implements. Their research consisted of developing both non-preemptive and
preemptive scheduling algorithms and comparing them. Their preemptive algorithm ran
in O(nlog(n)) time. While their non-preemptive algorithm worked for some trials, an
algorithm that performed well in all cases escaped the researchers.

Hoogeveen, Skutella, and Woeginger approached their research problem from a
reverse order. They conjectured what sorts of problems they would encounter when the
processor was allowed to reject jobs, and then developed their algorithm based on these
issues. One of the issues discussed in Preemptive scheduling with rejection is the
increase in processing time when the processor rejected the wrong jobs. The retrieval of
the rejected jobs adds to the processing time. Taking this and other problems into
account, the group developed an algorithm that ran in polynomial time.

There are many more articles written on the subject of operating system
performance, and many more algorithms that have been developed in hopes of making
operating systems more efficient. Like with the algorithms described in the articles,

every algorithm has to undergo some sort of analysis to determine the its strengths and
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weaknesses. Experiments are set up not only to create algorithms, but to test their
performance within specific computing environments.

The purpose of this experiment is to statistically analyze the performance and
efficiency of scheduling algorithms while using a word processor, a media player, and a
web browser. These are the three most common applications found on a computer used
for learning/academic use, especially in a college setting. Analyzing these algorithms
could be important for to decide which one will run a college students laptop more
efficiently.

Errors

The original proposal for this thesis project was to compare a preemptive
scheduler against a non-preemptive scheduler running the three applications previously
stated. The preemptive portion of the experiment was straightforward; Linux, the
operating system used in this experiment, is already preemptive (it uses the NOOP
scheduling algorithm described below). The challenging part of the experiment was
writing and testing a non-preemptive scheduler. However, after a couple of failed
attempts and a dwindling time frame, this portion of the experiment was scrapped in
favor of analyzing the three preemptive algorithms. The reason the three preemptive
algorithms worked better is because Linux’s scheduler can easily be switched via a
terminal command while the operating system is running. This approach allowed me to
gather more data and evaluate the effectiveness of three preemptive algorithms: Deadline,
Completely Fair Queuing (CFQ), and No Operation (NOOP).

The problems and obstacles that I ran into while attempting to code a non-

preemptive scheduler are instructive. These problems add nothing to the overall
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experiment at this point, but show how difficult operating system development is. In my
first attempt, T opened and edited the source code files for the Linux scheduler, sched.c
and sched.h. The initial plan to make the scheduler non-preemptive was to get rid of any
time slices and deadlines that are imposed on the processes and only have the process
leave the processor if it remained idle for a certain amount of time, since a non-
preemptive scheduler cannot kick a process off the processor until the process itself
yields its resources. After coding, I accidentally exited out of the source code, only to
find that the algorithm had not worked at all and now Linux was not working properly. I
could not get back into the source code to undo my mistakes, so I had to reinstall Linux
on the computer.

Before launching into the next attempt, I decided to study the source code more
thoroughly than I had previously. This lead me to discover that the code for the
scheduling algorithms was not just in the two files I had looked at, but spread out through
even more files in multiple directories. Changing code in the main scheduler file caused
errors in other scheduler files located through Linux’s directory system. This was the
first and biggest obstacle that hindered me from completing the non-preemptive
scheduler. Linux’s directory structure and the interconnectedness of the files is very
complicated. If I wrote code in a couple of files, it would have adverse affects elsewhere
that I, even through patient research, could not find. This was very frustrating, because I
could never be sure whether the errors were caused specifically by the algorithm, or
because I had to change something in a file somewhere else before it could work.

From then on, every subsequent attempt to modify the scheduler was met with

failure, mainly due to the obstacle just described, as well as issues with indefinite
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postponement and deadlock. In the end, I ended up failing to make a non-preemptive
scheduler, partially due to the errors and obstacles previously described, mostly due to
my lack of knowledge and naiveté when it came operating systems. Perhaps after a few
more years of operating system studies and learning C, I may be able to pursue my initial
project.
Definitions

The replacement experiment developed was to analyze the performance of three
preemptive algorithms. The Linux operating system has three preemptive scheduling
algorithms already coded into the operating system: Deadline, CFQ, and NOOP. Having
the schedulers already written by skilled programmers is advantageous to the analysis of
their performance. Coding these algorithms myself might have affected the final analysis
of the algorithms. There might have been errors in my program that would have led to
issues during the tests, giving false data that the scheduler itself was performing poorly,
rather than the problem being with my code. This way, the analysis of the three
algorithms can be done without fear of extraneous coding errors.

The NOOP scheduler is probably the simplest of the algorithms to understand.
Any incoming requests by processes to use the processor are simply placed in a first-in-
first-out (FIFO) queue. A FIFO queue is one in which processes leave the queue in the
same order they entered the queue. The requests are processed in the order that they
arrived and are removed when they have completed or their time slice has expired. Ifa
process runs out of time, it is simply placed back in the queue to wait its turn.

The Deadline scheduling algorithm, as its name implies, adds a deadline to

requests. This deadline is basically a set amount of time during which the process has to
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complete its task. It implements two separate deadline queues, as well as read and write
queues. The first step for the algorithm is to determine which queue to pick a process
from. This is decided based on the priority assigned to the queues. Next, the algorithm
checks to see if the process in the queue has run past its deadline. If it hasn’t, the process
is then run. The Deadline algorithm is best used if a database is required (Collinson 1).
The CFQ scheduling algorithm is similar to the Deadline algorithm. In CFQ,

requests are given a time slice and placed in a queue that corresponds to the process
making the request. A time slice is similar to a deadline, but when the slice expires, the
process is just removed from the processor, and can run again at a later time if it has not
completed. The length of the time slice and the number of requests that can be processed
from a specific queue are based on the priority placed on said queue. A higher priority
means a longer time slice and more requests from that queue can be processed together.
An interesting feature of CFQ is that it lets each process idle a little bit after it appears it
has completed. A process that is running idle is usually a bad thing in operating systems,
because that process is still allocated resources that could be used by other processes.
The reason CFQ allows a small amount of idle time is because requests may appear idle
when they are in fact still processing data. Stopping a request in the middle of processing
data is detrimental to the performance of the operating system, so CFQ tries to fight this
false idle time ("Chapter 13. Tuning I/O Performance.").

A feature that all three of these algorithms implement is request merging.
A request merge occurs when a request is made that is located on the same part of the
disk as the request/process that is already running. Both the running request and new

request are run. For example, using the NOOP algorithm, there is a request in the FIFO
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queue waiting to use the processor and that this request will need to take place at a
section of the disk called Block 1. When it starts running, another request comes in at the
back of the queue. However, since this request must also be run on Block 1 of the disk, it
is then run at the same time as the current request. Request merging can help reduce the
distance the disk head has to move by processing all requests that are located in the same
place all at once, thereby improving overall system performance (Love).

Given the similarity of these algorithms, it was unclear which algorithm would
perform the best. Since this experiment only ran three common applications during the
trials, the algorithms should been able to schedule them effectively. My initial conjecture
was that Deadline would do slightly worse, based on the fact that it is better suited for
database work, but the expectation was that the results would be statistically equivalent
for all three algorithms, with only slight variation that was not statistically significant.

Equipment

The experiment would consist of analysis of data collected from the algorithms
and testing whether there is any statistical difference among them. In order for this
experiment to be as béreft of as many outside influencing factors as possible, I bought a
brand new HP Pavilion g6 laptop. The computer came with 320 gigabytes of hard drive,
4096 megabytes of DDR3 SDRAM, and Windows 7. The reason I bought a new laptop
is because other hardware I had access to had extra applications and software that could
affect the results of the experiment. I partitioned the hard disk drive of the laptop so that
I could install the Linux operating system alongside the Windows operating system. The

version of Linux I used was Ubuntu version 12.04 LTS.
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The three applications I used during the testing were a web browser, a word
processor, and a media player. For the web browser, I used Firefox version 19.0.2,
because this was the default browser on Linux. The default word processor on Linux is
LibreOffice Writer version 3.5.7.2. Finally, the media player [ chose was Rhythmbox
version 2.96. Unfortunately, iTunes requires few extra installations for it to work on
Linux, so I chose Rythymbox instead because it was already downloaded. I uploaded
809 songs to Rythymbox, which is approximately 4.11 gigabytes of data.

Procedure

Another slight modification to the original proposal was how I was going to
collect the data. The original proposal was to run the three applications in different
combinations and time how long it took them to complete their tasks. Upon reflection,
this method would have been sloppy and produced inaccurate results. It would have been
difficult to determine if one of the applications was complete and defining what
“complete” meant would have led to some inaccuracies. Instead, [ used a performance-
checking tool called vmstat, a program that reports virtual memory statistics. This
program prints out cettain statistics about how the system was performing during the
experiment.

The first step of the data collecting procedure was choosing the scheduler. The
three scheduling algorithms that I was testing could easily be switched to by this
command: echo noop > /sys/block/had/queue/scheduler. The next step after the
scheduler was set was to decide which order I should run the applications in. There are
three applications, so there are a total of six different orders in which the applications can

be started up. I wasn’t sure if the order would have any affect on the results, so I tested
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all of the orders just to be thorough. For example, I would start up a web browser, then
begin a new word document, and lastly, start playing some music.

This is where vmstat came into play. Vmstat can, if told to, print out a line of
statistics approximately every second. Running vmstat and the applications for a 100
second interval at a time yields 100 lines of statistics, which I would then average. I did
this for 100 trials for each ordering of the applications. 100 lines of statistics for 100
trials give 10,000 lines of statistics. There are six different ways the applications can be
ordered, so this leads to 60,000 lines of statistics that we can use to analyze each
scheduling algorithm. Statistically speaking, each trial had 100 observations that made
up the trial, so for each scheduling algorithm, there was a total of 600 trials. After all of
these statistics were gathered, I found the average for each of the six application
orderings, and then averaged those to get the results for the scheduling algorithm. 60,000
lines of statistics may seem like a lot to average, but it was straightforward to import the
statistics into a spreadsheet. From there, I averaged each of the columns and record those
averages in another document. This can all be done via this command: vmstat 1 100 | tee
Desktop/data.ods. This command states that vmstat should print out 100 lines of
statistics (about 1 per second) before exporting that data to a numbers file, here entitled
“data.ods.”

Before I state the results, I should describe the types of statistics I looked at

during the trials. Here is a sample line of what vmstat would print out:

r |b |swpd |free |buff |cache |[si |so |bi [bo|in [es [us [sy [id |wa
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Even though I averaged all of these statistics, I ignored some of them in the final
analysis because they had to do with memory. Since the laptop was new and had a lot of
memory, [ didn’t think these statistics would matter in the final analysis. Just to make
sure that the memory statistics would not be statistically relevant to the results, I used the
GNOME System Monitor software, another performance tester, to see how much
memory was allocated to each of the three applications. When Firefox was running, it
was allocated about 40-50 megabytes of memory. Rhythmbox was allocated about 40
megabytes of memory, as well. LibreOffice Writer barely uses any memory, as is
expected, because word documents don’t require much memory. This paper itself is only
about 150 kilobytes of data. Because these three applications don’t require a lot of
memory, the memory usage statistics are not useful for determining the algorithms’
performance.

The bolded data are the information [ was interested in. “r” and “b” have to do with the
number of processes waiting and the number in uninterruptible sleep, respectively. A
process sometimes enters the sleep state if it does not have any work to complete at the
moment. If the number of processes sleeping is high, this also increases the processing
time, because the processor has to wait until the process wakes up for it to check if it
needs the processor. A sleeping process cannot use a processor, even if one is available,
which can cause an algorithm with a lot of sleeping processes to be inefficient (Ware).

These statistics are important for scheduling, because they can tell the
programmer if there is a problem with the scheduling algorithm. For example, if the time

slices or deadlines set by the CFQ and Deadline algorithms are too long, the number of
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processes waiting and sleeping will be higher because each process is given a large
amount of time on the processor. Forcing the algorithms to give out shorter time slices
and deadlines may lead to more processes being run, which may lead to a more efficient
algorithm. However, this might also increase the number of interrupts and context
switches.

The number of interrupts and context switches happening per second are indicated
by the “in” and “cs” columns, respectively. Interrupts are a signal to the operating
system that something needs immediate attention. An interrupt could, in fact, be
signaling for a context switch, which occurs when one process is replaced by another.
We would like these numbers to be as low as possible, because interrupts and context
switches take time on the CPU, preventing it from doing useful work for the applications
(Kaedrin).

The next four pieces of data (“us”, “sy”, “id”, and “wa”) are all connected
because their numbers represent a percentage of the CPU time. “us” represents the
percentage of time spent running code in user mode, while “sy” tells us the percentage of
time running kernel code. Code that is executable in kernel mode has access to the
functions and methods that control not only very low-level parts of the computer, but also
the hardware itself. Kernel mode code is highly restricted; an error in the kernel code
will have major consequences for the entire machine. Code executed in user mode is
basically run on top of the kernel code. User mode only has access to some of the
functionality that is performed by the kernel. Errors in the user mode are recoverable.
Based on the three applications being used in this experiment, we would expect the

percentage of time in user mode to be higher than the time in kernel mode, because the
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applications shouldn’t need much accesé to the lower-level functions. The time spent in
kernel mode should have some correlation to the number of context switches, because
every context switch happens in kernel mode. If one algorithm has more context
switches than another, we should expect the time spent in kernel mode to be slightly
higher (Atwood).

“id” represents the percentage of time spent idling, and “wa” is the percentage of
time spent waiting for I/O requests to complete. Idling simply means the processor is not
being used by anything; there are no processes waiting to use the processor. For
example, we would expect the idle time for the CFQ algorithm to be higher than the other
two, because part of its algorithm dictates that there be a small amount of idle time after a
process appears to be finished, even though it may just be waiting for some other event to
happen before it starts running again. A high amount of idling could be a sign that the
processor is being poorly optimized, or it could mean that the algorithm is working well
enough that processes are finishing relatively fast. It was hard to discern whether the
amount of time waiting for I/O requests was high or low. The three applications rely
heavily on I/O requests, so we would expect “wa” to be high, but if the algorithm is
efficient enough, the time spent waiting could be minimal. (Ware).

Results

A sample of the 60,000 lines of data collected is included in the appendix. The

appendix also includes the final averages for each of the three algorithms. They are

summarized and discussed next.

After all of the data was collected, here were the final averages of the three

algorithms:
r b swd free buff  cache si S0 bi bo in cs us sy id wa
NOOP  2.4850.038 0  2422061.87 71860.73 55724.95 0 0 45,536 175.656 2120.69 4581.597 25.611 8.02 63.39 2.978
CFQ 2484 0.079 0  2423323.67 70134.29 56046.57 0 0 215.46 243.373 2110.9 4482.333 25.509 8.056 63.53 2.907
DEADLINE 248 0.037 0  2422292.87 71907.22 59836.12 0 0 45.378 174.953 2125.05 4493.902 25.638 8,105 63.31 2.948
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One way to analyze this data is to compare each of the means as they appear
above. However, just looking at these means and coming to a conclusion would be naive,
because even though these numbers are all different from each other, they may or may
not be statistically different. The sample size plays a role in this calculation. The larger
the sample size, the less variability there may be between means. Because the results are
each created from a sample size of 600, it may very well be possible that these means are
statistically the same.

To determine if the means of the data (inoop, IcFQ, Hbead) are statistically the
same, we must apply a hypothesis test to this data. A hypothesis test consists of two
statements, the null hypothesis (Hp) and the alternate hypothesis (Hy). For each set of
means we can state our hypotheses in this fashion:

Ho: pnooP=HcrQ=HDead
Ha: HnoorZHcrQ
HCFQ7MDead
HNOOPFHDead

So, we would apply this hypothesis test for each type of statistic, starting with the
“p” statistic, and work our way down to “wa.”

There are few more components .to a hypothesis testing. The next component is
the level of significance (a)). The level of significance is our cut-off for the p-value. The
p-value, along with the level of significance, is used to determine whether we should
reject or accept the null hypothesis for the data. The level of significance is
predetermined; it is independent of the data and is usually either 0.05 or 0.01. The p-
value is constructed from the data being tested. If the p-value were less than the level of

significance, we would reject the null hypothesis in favor of the alternate hypothesis. If it
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were greater than the level of significance, we would accept the null hypothesis. For
these tests, I found the p-value for both o of 0.05 and 0.01.

With the hypothesis test set, the type of test now needs to be chosen. Since we
are testing whether the means are statistically different, we want to look at the variability
between the means. The proper test for this situation is a 1-Way Analysis of Variance
(ANOVA) test. The ANOVA test is used to determine the levels of variance between the
three means and determine if they are statistically different. The ANOVA test is
specially suited to compare three or more means. Fortunately, Minitab, a statistics
software program, has the capabilities of performing an ANOVA test and showing us the

p-value for each set of means. Here are the p-values for all eight statistical means:

r b in es us sy id wa ,
p-values 0811 0 0.122 0.106 0.421 0.994 _ 0.319 0.755

As we can see, most of these p-values are quite high. Recall, to reject the null
hypothesis, our p-values must be less than the level of significance. In both cases, (o of
0.05 and 0.01) all except for one of the data is over the levels of significance. This means
that for “r”, “in”, “cs”, “us”, “sy”, “id”, and “wa”, the variability among the three

algorithms’ means was so small, that they should be considered statistically the same

mean. A boxplot of the data visually confirms that the means are almost identical.
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Data for "r"
1:HOOP 2:Deadline 3:CFQ
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As we can see, it is nearly indiscernible if the means are different. While this is only the
boxplot for “r”, the rest of the data, except for “b”, look almost identical to this graph,
and so it is not be particularly helpful to include them. This also clears up the issue of the
correlation between the number of context switches and time spent in kernel mode.
Because the mean time spent in kernel mode is statistically the same for all three
algorithms, we would expect that the number of context switches would be the same, as
well. The data supports this.

The statistic of interest is “b”. It has a p-value of 0, so for both levels of
confidence, we should reject the null hypothesis and accept the alternate hypothesis,
which was that the three means are statistically different. This means that even though
the sample size was large, there was still enough variability among the means to make

them statistically different. Here’s the boxplot for “b™:
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Data for "b"
1:HOOP 2:Deadline 3:CFQ
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Here there is visual evidence that the mean is statistically different for the CFQ
algorithm. It appears that the means for NOOP and Deadline are statistically the same.
Recall, that we would like the number of processes in the sleep state to be kept as low as
possible, because this may increase processing time.

Conclusion

Looking at the results, I conclude that my findings were that this selection of
scheduling algorithms has no impact on the performance of the three applications. The
NOOP and Deadline algorithms are statistically the same for all parts of the data, so there
are no data to support one of them performing better.

Based on the “b” data, we could possibly say that the CFQ algorithm performed
slightly worse than the NOOP and Deadline algorithms. However, [ hesitate to make that
conclusion, as well. The only piece of data that CFQ differed on was the number of
processes sleeping; all other facets of the data were statistically the same as the other two

algorithms. A process enters the sleep state only if it has nothing to execute at the
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moment. One could conjecture that the algorithm handled the processes that were
sleeping efficiently; the algorithm ran so that any process that was sleeping would not be
requested until it woke up, saving processor time. I say this because CFQ was
statistically the same for all of the other pieces of data. It is very possible that CFQ had
more sleeping processes, but still worked as efficiently as the other two algorithms.

My final conclusion is that the data collected shows that the three applications,
statistically, performed the same. These results are a bit anti-climactic, but the data
shows this much. So, for a laptop that uses the three most common applications used by
college students, the results suggest that any of the three preemptive scheduling
algorithms provided by the Linux operating system will perform as efficiently as the

other two.
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Appendix
Swpd free butt
0 2442178 71412
g 2441540 71420
4] 2440616 71420
g 2440384 71420
0 2439044 11420
O 2438920 71420
) 2438920 71428
0 2438672 71428
4] 2435680 71436
0 2432672 71436
0 2432300 71444
0 2431904 714064
free buff cache
2422557.8 71830.61 59811.21

2422034.48
2420486.54

71824.83 54916.55
71909 54891.81

2422476 71878.33 54905.71

2421206.23
2423610.18

2422061.87

free
2422946
2424293
2423266
2423801
2421727
2423909

2423323.67

free
2422554 .47
2422096.35
2422869.05
2422343.44
2421426.63
2422467.29

2422292 .87

71879.61 54924.98
71842 54899.44

71860.73 55724.95

buff cache
70272.56 56289.48
70198.49 55921.16
70166.22 55808.41
70104.54 56215.63
70002.81 56078
70061.09 55966.73

70134.29 56046.57

buff cache
71929.28 59833.99
71821.09 59838.38
71917.7 59844.87
71921.52 59846.14
71946.59 59836.56
71907.15 59816.81

71907.22 59836.12
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Sample Trial Data
cache  si 80 bi bo in €s  us sy ¥ wa
546024 0 O 386 47 459 1013 12 4 7 5
5460286 0 ¢ 0 44 1149 2848 14 4 81 | 2
546028 0 0 = O 0 1984 6430 51 10 39 0O
546176 0 0 128 0 2491 4685 17 7 77 .0 |
546156 O 6 0o ¢ 2295 3850 35 9 56 O
546156 O 0 0 44 2706 4569 28 7 65 ¢
548156 O 0 0 28 2453 4150 28 & 66 2
546156 0 O 0 0 2413 4106 29 5 86 O
546198 0 g 0 32 2126 4592 37 7 54 3
548216 O 0 0 0 1854 2858 19 7 74 0 |
546208 O 0 0 12 1441 3500 14 5 8 3
546200 0 O 0 412 1211 2269 19 3 74 6§
Final Averages
NOOP
Si S0 bi bo in cs us sy id Wi
0 0 45568 174.627 2164.58 4446.54 25499 8.15 63.24 3.1
0 0 45,356 176.802 2141.02 4817.18 25.398 7.8 63.99 2.8
0 0 45.706 176.23 2063.85 4378.29 25.97 8.15 62.83 3.0
0 0 45.478 176.833 2083.43 4569.55 25.572 8.12 63.28 3.0
0 0 45681 175.047 2154.21 4571.23 25.812 8 63.03 3.1
0 0 45427 174.398 2117.06 4706.79 25412 7.9 63.96 2.7
0 0 45.536 175.656 2120.69 4581.597 25.611 8.02 63.39 2.9
CFQ
si SO bi bo in cs us sy id Wi
0 0 221.48 249.974 2110.5 4386 25.439 7.864 63.75 2.9
0 0 210.33 244.672 2131.37 4299 25.403 8.212 63.49 2.8!
0 0 214.34 247.54 2030.53 4553 25,653 8.212 63.2 2.9
0 0 216.51 237.012 2169.15 4690 25.44 8.229 63.32 3.00
0 0 215.92 236.267 2115.33 4682 26.079 7.843 63.43 2.6
0 0 214.16 244,774 2108.51 4284 25.042 7.976 64 3.0(
0 0 215.46 243.373 2110.9 4482.333 25.509 8.056 63.53 2.9(
Deadline
si S0 bi bo in cs us sy id Wi
0 0 45.08 175.54 2092.58 4590.98 26.08 8.359 62.58 2.9!
0 0 45,18 175.91 2124.37 4706.63 25,37 8.079 63.52 3.0:
0 0 45,39 175.29 2185.78 428572 25.49 7.933 63.94 2.6«
0 0 45.75 175.39 2081.97 4501.14 2545 8.215 63.24 3.1l
0 0 4558 173.66 2157.89 4447.43 25.67 8.101 63.27 2.9!
0 0 4529 173.93 2107.71 4431.51 25.77 7.941 63.33 2.9
0 0 45.378 174.953 2125.05 4493.902 25.638 8.105 63.31 2.9



