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ABSTRACT

Mathematics is frequently discussed in the Cartesian coordinate
system, but this system has its downfalls. In most cases, it does not
conveniently represent the curved shape of the physical world. Gauss
saw the need for a general coordinate system that would allow one to
explore the properties of curved surfaces. It was only then that the
curvilinear coordinate system was born. With Riemann’s insight, it grew
to represent infinite space, and curvilinear coordinate systems were
utilized in physical applications. Orthogonal curvilinear coordinates, in
particular, were used in solving select partial differential equations,
including the Laplace and Helmholtz equations. The focus of this study
was restricted to the derivation and application of orthogonal
three-dimensional coordinate systems.

A curvilinear coordinate system expresses rectangular coordinates x,
Y, Z in terms of the generalized coordinates Uy, Uy, Us. By holding u,
and u; constant, we form a family of u, surfaces. Similarly, we can
form families of u, and u, surfaces. A coordinate system is
orthogonal if the three families of coordinate surfaces are mutually
perpendicular.

There are more than fifteen three—dimensional orthogonal curvilinear
coordinate systems of degree two or less. Throughout the following
research and application, four of these systems are considered:
cylindrical coordinates, spherical coordinates, elliptic cylindrical
coordinates, and parabolic coordinates.



1. HISTORY OF COORDINATE SYSTEMS

The idea of a coordinate system has existed for centuries. In
Egyptian hieroglyphics, the symbol for land that has been surveyed is a
cross hatching of vertical and horizontal lines. Towns in ancient Rome
were laid out on a rectangular plan with two principle streets running to
cardinal points on the compass. The Greeks, who are credited with
“inventing” mapmaking, were the first to use coordinates in
geography. In 320 BC, Diceearchus of Mesina, a disciple of Aristotle,
created a map of the world referencing two axes directed to the
cardinal point of a compass.

As the idea of a coordinate system evolved, many respected
mathematicians contributed to the development of curvilinear
coordinates. Nicole Orseme (1323-1382) studied the distance covered
by an object moving with variable velocity. He associated the instants
of time within the interval with points on a horizontal line segment,
similar to a modern x-axis. At each of these points, he erected a
vertical line segment, the length of which represented the speed of the
object at the corresponding time [3]. We would now call Orseme’s
depiction the graph of a function. Orseme then understood that the
area under his graph represented the distance covered, for it was the
sum of all the increments of distance corresponding to the
instantaneous velocities.

Frenchmen Pierre de Fermat and René Descartes independently
explored the idea of analytic geometry, also known as coordinate
geometry. They were the first to truly unite algebra and geometry.
Fermat’s findings, although rarely published, dealt with the geometry
of analysis and of infinitesimals. He realized that from the “specific
property”, or equation of a curve, all of its properties could be
deduced. From ideas he began contemplating in 1629, his later papers
explored the application of infinitesimals to the determination of the
tangents to curves and the questions of maxima and minima.

Unlike Fermat, who had few public works in his lifetime, Descartes
published many of his works in the theory of analytic geometry.
Although “Cartesian coordinates” and the application of algebra to
geometry had already appeared before he published La Géométrie in
1636, the book’s merit lies in its application of 16th century algebra to
ancient geometry. Descartes had an idea that a curved line could be
expressed algebraically in terms of an equation involving the
perpendicular distance of a general point to two perpendicular
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reference lines. He is credited with being the first to make a graph,
allowing a geometric interpretation of a mathematical function, and
giving his name to Cartesian coordinates.

During the 1700’s, mathematics progressively led to Gauss’
discovery of curvilinear coordinates. Gottfried Leibniz introduced
mathematical terms like “coordinates”, “abscissa” and “ordinate”. In
1731, Antoine Parent found the modern equation of a sphere, and
Alexis Clairaut studied curves of double curvature. Clairaut published a
treatise on these curves in three-dimensional space and recognized
these curves as the intersection of surfaces.

When Carl Friedrich Gauss introduced curvilinear coordinates, he
made a significant advancement in coordinate geometry. Gauss did not
discover this general coordinate system by accident; rather, his theory
was driven by inner necessity. In the early 1800’s, the Hanoverian
government requested Gauss to participate and lead a geodetic
surveying of their land. There were patches of hilly countryside where
Cartesian coordinates could not be used. Gauss faced the practical
problem of making measurements on a curved surface.

Curved surfaces were considered before Gauss. The equation of a
curved surface was given in the form z = f(x, y) or F(x, y, z) = 0.
Gauss conceived the idea that it was “not fair’ to consider natural
surfaces as well circumscribed portions of the Cartesian three-
dimensional space. “The surface has its own properties and one should
be able to investigate these properties without leaving the surface
[7].” Gauss’ idea was to draw two sets of arbitrarily chosen mutually
intersecting lines as coordinate lines of the surface, given that the
lines comply with the usual continuity and differentiability conditions.
The coordinate lines introduced a pair of numbers u, v-called curvilinear
or Gaussian coordinates-by which the points of the surface could be
characterized [7].

A point P on the surface now became an intersection of the
coordinate lines u and v. The rectangular coordinates x, Y, Z could be
expressed as functions of u, v:

X = X(u, V) y =y(u, v) Z=2Z(U, V)
This “parametric” representation of a surface became of greatest

importance in geometry and physics. Gaussian coordinates’ flexibility
sparked new geometrical research and became a popular mathematical
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tool in astronomy, geology, and eventually quantum mechanics.

The introduction of curvilinear coordinates was only one small
element in Gauss’ geometrical theory. Gauss extended the concept to
create a truly new approach to geometry, leaving Euclid’s geometry far
behind.

The basic construction elements of Euclid’s geometry are points,
straight lines, angles, and circles. Gauss demonstrated that he could
“erect the entire edifice of geometry” from only one postulate: the
distance between two points (X4, ¥4) and (X5, ¥,) :

gk = (X2 - X1)2 + (y2 - y1)2
Ultimately this one postulate leads to the basic distance expression:
ds? = dx2+ dy?

We call ds the “line element”. Gauss found that the same results were
obtainable in Gaussian coordinates u, v. He went much further than
Euclid in his investigation, for Gauss showed that the same
construction elements which operated on a curved line were equally
available for a curved surface. Thus the line element

ds? = dx? + dy? + dz2

We call the metrical geometry, generated on a curved surface by the
line element, the intrinsic geometry of the surface. “Straight lines”
now mean “shortest lines” measured on the surface, and are often
called “geodesics” to avoid confusion.

Gauss’ discovery of curvilinear coordinates was extended to infinite
dimension by Bernhard Riemann throughout the 1830’s and 1840’s .
Riemann was often shadowed by his successor, and he did not feel that
his work merited either attention nor publication, yet it was Reimann’s
discovery of tensors that later became the mathematical crux of
Einstein’s Theory of General Relativity. Einstein wanted to formulate
the laws of physics in arbitrary coordinates, provided that space and
time are united into one single four—dimensional geometry. From the
principles of tensor calculus, Einstein realized that this was physical in
nature, but geometrical at heart.
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2. DERIVING ORTHOGONAL CURVILINEAR COORDINATES

The properties of curvilinear coordinates can be generically derived
and then applied to each orthogonal coordinate system. In this section,
we will derive the line element, the element of volume, the gradient, the
divergence, the curl, and the Laplacian given the transformation from
three—dimensional Cartesian coordinates to another three—dimensional

system.

2.1 Transformation
Define x, y, z as functions of u;, Uy, Ug.

X =x(u,, u,, u,)

z =z(u,, u,, u,)

Define the position vector r = (x, y, z) and therefore r = r(u,, u,, u,).

The unit tangent vectors to the intersecting Uy, U, and u, curves are
given by the vectors e,, e, and e, respectively. These vectors form

the base vectors of the coordinate system at any point of the
surface.
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au1 1 odr
e1 — = —
ir_ h1 8u1
du,
or
Ju 1
ﬂ: h2 Bu2
au,
ar
Ju
g, =—3a__ 108
E_ h3 Bua
du,

The quantities h,, h,, h, are called the scaling factors of the system.

or 2 2 2
Note that h, = ﬁ = [?—J + [;)—VJ +[§£J is the speed, in
u u u
’

terms of time uy, with which a curve u, = constant and us = constant is
traced.

From now on we will assume that the basis (e, e,, e;) forms an
orthogonal space. Also assume that the functtons X, Y,z can be
solved in terms of the new coordinates Uy, Uy, Us. In other words, the

system is invertible.

X = X(u1. 2» Us) Uy = Uy, 2)
y =y(uy, u,, u,) © u, = uy(x, Yy, z)
Z= Z(U_', 21 3) u3 = u3(xl y! Z)
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2.2 Line Element

Let ds represent an element of arc length in the general coordinate
system.

ds2 = dr - dr
ar ar ar ar
= ‘du1 + ﬁduz + ﬂdu3 . —aidu1 + —du2 + —du3
au1 au2 au3 au1 au2 au3

= (e;h,du, + e,h,du, + e;h,du,) - (e4h,du, + e,h,du, + egh,du,)

= (e, - e))(h,du,)? + (e, - ey)(hyduy)? + (e, - €,)(h,duy)?
By assuming that the base vectors are orthogonal,

0 if i # |
1 ifi=j

Then
ds? = (e, - e,)(h,du,)? + (e, - e,)(h,du,)? + (e, - e,)(h,du,)?
= h12du12 + h22du22 § h32du32
2.3 Volume Element

Recall that the area of a parallelepiped with vector sides A B, Cis
V=|A. . Bx0].

We see that for an increment of volume, the parallelepiped formed has
sides formed from the tangent vectors in each base direction, namely

dr1, dr2, dr3.

apel 2t .[ﬂdu g ﬂduaJ

2
au1 au2
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We can factor out constants.

X
1 au2 ou

ar or or
3

dVv = i ‘J du1<:lu2du3

= |he, - (h,e, x hae,)| du,du,du,
=h;h,h, e, « (e, x e, | du,du,du,
Note that (e, x e;) = e, and e, *e, = 1 by orthogonality.

dVv = h1h2h3du1du2cdu3

2.4 Gradient

The gradient (VF) measures the rate of change of a scalar field
F(u,, Uy, Uy) at a point, and is expressed in terms of a vector. The

direction of the vector is the direction of the greatest rate of
increase of F, and the magnitude is the value of the maximum rate of

increase [8].

For any scalar function F, we can express the gradient of F in
orthogonal curvilinear coordinates (uy, U,, Ug) as a linear combination
of the base vectors (e, e, e,).

(1) VF(uy, uy, ug) = Fre, + Fye, + Fae,

Since

or
(2) dr = —du, + —du,, + U= e,h,du, + e,h,du,, + e;h,du,

The differential of a scalar function is defined as dF = VF - dr. Thus,
using equations (1) and (2),

Page 7



3 dF = (F1, F2, Fa) e (h1du1, h2du2, h3du3)
= F1h1du1 + F2h2du2 + F3h3du3

But

oF oF oF

(4) dF=——du, + —du, + —du
du, ! au, 2 ou, ?

Equating (3) and (4),

F 1
F o _1OF 1

F.= = =
2 T3
h, du, hy du,

1
1 P
h, du,
Then substituting into equation (1), the gradient of the function F is

defined as

1 JF 1 oF 1 oF
¥ =2y 4 o, +t———e,
h, du, h, du,

This indicates the del operator equivalence

i 19 10 1 9
h, du;  h, du, h, du,
2.5 Divergence

The divergence is equal to the rate of increase of the lines of flow per
volume [8].

J;A-ds
divA=limf —
V-0 Vv

It can also be described as the rate at which “density” exits a given
region of space. By measuring the net flux of content passing through
a surface surrounding the region of space, it is immediately possible to
say how the density of the interior has changed [4].

Let A = A1e1 + Az.e.-2 + A3e3 and let n be the outward drawn unit
normal to the surface AS of AV.
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Notice that P in the diagram is a point on the surface. The procedure
to derive the divergence at a point P on the surface is to consider the
outward flux of each of the six faces of the volume element AV having

edges h,Au,, h,Au,, h,Au,. The outward flux = ﬂ (A + ds) , where ds is
si
the vector increment of surface area.

ds = (hAue, x thujej)
= hihj(ei X ¢=.-j)A.uiAuj

Thus ds = hithuiAujek where e =n, and it can be substituted into the
flux integral.

J:[(A ods):ﬂ(A-n) ds
S

Si
Extending the mean value theorem for integrals, we can express the
flux as (A < n) at a point on the surface S, multiplied by the area of S, .
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(5)
ﬂ (A + ds)=[(A + n) at a point] ﬂds = [(A « n) at a point]=[area of S,
S, S

By assuming continuity, (A  n) at any point on the surface
approximates (A + n) at P. Thus, when calculating the divergence at a
point P, this approximation is sufficient.

We will use equation (5) to derive the flux on each of the six faces,
simplifying the task by taking advantage of symmetry.

Consider the surface PLKJ. The outward unit normal is n = ~Bi. Let
surface PLKJ = S1 .

Then
(6) J] (A« ds) = J] (A« -ey) hyhydu,du,
S, Sy

Now consider the surface EFGH = 82 . The outward unit normal is
h=e,.
1

@ [[@a-ds)=[[a-e,) nhdu,au,
8, S,

= J] A1(u1+h1Au1, Uy, u3)h2h3du2du3
Sy i
We must expand the underlined function using Taylor’s Expansion to
obtain a linear approximation of the function A,(u +h Au,, Uy, Ug) h2h3.

Taylor’'s expansion is given by

f(x + p) = f(x) + Dpf(x)”p”
AN

Ipll
=f(X) + VI(X) * p

= f(X) + VF(X) * Ipll
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Thus, with p = h,Au,e,, Taylor's expansion of the function results in
the approximation

AT(u1+h1Au1, Uy, u3) h2h3 -
A,(uy, Uy, us) h,h, + V(A,(uy, Uy, ug) hyh,) h,Au.e,

Recall

\%

1 oF 1 9F 1 oF
h1 &u1 hzau2 hsau3

So
A(u;+h,Au,, Uy, Ug) hyh, =

d
Ai(uy, u,, us) hyhg + E(A1(u1, Uy, Ug) hyhsAuL)
1

Returning to the surface EFGH and equation (7)

ﬂ (A« ds) = J]. A1(u1+h1Au1, U,, U,) h2h3du2du3
S, S,

d
= {A1(u1, Uy, Ug) hyhy + aT(A1(u1, Uy, U,) h2h\,5Au1)JAu2Au3
1

d
=A,(uy, u,, u,) h2h3Au2Au3 + I(AH(UT’ Uy, Ug) h2h3)Au1Au2Au3
1

The contribution from surfaces PLKJ (S,) and EFGH (S,) is

d
[ f (A« ds)+[[ (A ds) - (AU, Uy, ) hyhgAu,AuAu,
Si S2 1
By similar arguments, we can calculate the contribution from the
remaining four surfaces:

d
J:[ (A «ds)+ _[ (A «ds) = J(As(”v Uy, U,) h1h2)Au1Au2Au3
FGLK EHPJ 3
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p

d
J:[ (A + ds) + j (A« ds) = J(Az(uv Uy, U,) h1h:_.,):5.u1Au2Au3
GHLP EFKJ 2

The total contribution from the six faces of AV is

d 0 0J
——(A;h,h,) + ——(A,h h,) + —(Azh,h,) Au,AuyAu,
[E)u1 au2 au3

Dividing this by the volume h h,hAu,Au,Au, and taking the limit as the
volume approaches zero

1 [ 9 ) 9
div A = VA = ——(Ah,hg) + —(Ah h,) + ——(Ach h,)
h1h2h3[au1( 172 3) au2( 21 3) 8U3( 31 2J

2.6 Curl

The curl of a vector A can be physically interpreted as the amount of
“rotation” or angular momentum of the contents of a given region of
space. The curl is defined as the vector field having magnitude equal
to the maximum “circulation” at each point and to be oriented
perpendicularly to this plane of circulation for each point. To calculate
the curl, we find the limiting value of circulation per unit area A.

J; Feds
(VxF)yen=lim
A—0 A

To calculate the curl in orthogonal curvilinear coordinates, we will begin

by calculating (curl F) » e,, the first component of the curl. Consider
the surface S, normal to e, at P, as shown in the figure.
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g ’J

Let F=F.e, +F,e, + F.e, and denote the boundary of S, by C,, we
have

fo Fear=] Fears[ Fedrs [ Fedrs [ Fear
o PQ aL LM MP

Again, we will utilize an extended mean value theorem for integrals and
assume continuity, therefore the following approximation holds

(1 .[po F - dr = (F at a point) « (h,Au,e,)
=(F,e, + F,e, + F3e3 ) e (thuzez)
= F2h2Au2

By Taylor's Expansion,

d
IMLF * dr = F,h,Au, + J(thzzﬁuz)zﬁu3
3
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or

2
(2 |, Fedr=-F,n,au, - u, FnzAUA,

Similarly,

[, Fedr=(F at Py« (hauzey) = Fyhau,
or
@ | Fedr=-Fhoau,

and

)
@) | Fedr=Fhgaug s o (FahahuAu,
2

Adding (1), (2), (3) and (4) we have

d d
£C1F o dr = @;(FahsAua)Auz - a—us(thzAuz)Au3
J

)
=| —(F5sh,) = —(F,h,) [Au,Au
[3“2( 3Na) 3“:3( 2 2)J 28

Dividing by the area of S, equal to h,h Au,Au, and taking the limit as

A = h,h,Au,Au, approaches zero,

hyhy| au, ;

1 ) 0
|F)ee, = L (Eh) = —(F.h
(curl F) « e, 23[u(33) au(gg)J

Similarly, by choosing area S, and S, perpendicular to e, ande, at P
respectively, we find (curl F) « e, and (curl F) « e,, the second and third

components of the curl vector.
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curl F-——e1— i(Fh)—i(Fh)
hohglou, *% du, 22
e e
+ h_2 i(F1h1) _ i(FshS) I i(F2h2) _ i(F1h1)
3Ny ( du, au, h.h,| du, du,

or
h1e1 h2e2 h3e3
0

h1h2h3 E)u1 au2 au3

hiFy hyFy hgFy

curl F =

2.7 Laplacian

The Laplacian of a scalar function is defined to be the divergence of
the gradient. We make use of the divergence equation derived above.

1 0A 1 0dA 1 9A
VA=V - ———, ——, ——
h,du; h,du, h,adu,

1 1 JA
] ) 2 LB 2Ly
h1h2h3 au1 h1 au1 au2 h2 au2 au3 h3 au3

1 | o hghsaAJ+ a{h1hsaAJ+ 8£h1h28AJ
hhohg du,( hy du, ) au,l h, au,) aug h, au

3 3

—h
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3. APPLICATIONS
3.1 Ring Coordinates

Kellog presents a problem in his book, Foundations of Potential Theory,
asking the reader to verify the line element ds2 and the Laplacian V2U,
given the following equations.

sinu

X=rcosg, y=rsing, z=— |
coshA + cosu

sinhA
coshA + cosu

where r =

Verify

2 2
ds? = r2(u + d(sz

sinh2)

_— 2
Jay _ SN2 i[r&J+i[ra_UJ+ .y

r3 | 0AL 0A)  oau\ an)  sinh2) ag?

| chose this problem to confirm the validity of my general results
derived for curvilinear coordinates in the previous section.

The first task when approaching any curvilinear coordinate system is
to determine the base vectors and scaling factors for the system.
Let F(A, 1, 9) = (x, y, ) be the position vector where x = x(), u, @),

y=YA, u, ), and z = z(A, p, ¢).

9F or .. of sinhA sinu
or cosgp— , Sing—
O oA dA  (cosh) + cosp)?

(1) e = =

JF ar ; i sinhA sinu g
0 — | (cos?p + sin?¢) +
oA (cosh + cosp)?
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and so

- : . 2
(2 h, = ar [ | sinha sin
oA (coshA + cosp)?

ar
We must find ET). to complete h, .

3) dr  (coshi + cosp)coshi — sinhA(sinhi)
oA (coshi + cosp)?

therefore, substituting (3) into (2)

@ h = [(cosh2\ — sinh2L) + coshAicosp? N sinh2), sin?p,
A (coshi + cosp)? (coshi + cosp)*
1
= \/(1+ coshicosu)? + sinh?\ sinu
(coshA + cosp)?
Let
1
o =
(cosh) + cosp)?
then

(5) h, =a\/ 1+ 2coshicosp + cosh?icos2u+ sinh?) sin?p
A

= a\/1 + 2coshAcosp + cos?u(1 + sinh?A)+ sinh?A (1 — cos?p)

= a\/1 + 2coshAcosp + cos?u + sinh?)

= a\/1 + 2coshAicosp + cos?u + (cosh?A-1)

= oc\/ (coshi + cosp)?
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Substituting for oo and simplifying, we see that

1
(6) h, =
coshA + cosp

Note that the general formulas for the line element and the Laplacian
in curvilinear coordinates depend only on the scaling factors h,, h,, h,.

We must calculate eFl and e¢ to obtain h}l and h[p_

5E Jr . dr coshicospu + 1

oF cosQ— , sing—

En du du  (coshA + cosp)?
(0 &= ) 2 2

JF ar , coshAcosp + 1

oy — | (cos?¢ + sin2p) +

I (coshi + cosp)?
where
) h - ar 2 N coshAcosp + 1 :
: op (coshA + cosp)?

Find ar to complete h .
op a

ar — sinhAsinu

) =
Jdu  (coshi + cosp)?

therefore, substituting (9) into (8)

(10)

by o [ — sinhAsinu J2 B [ coshAcosu + 1 J2
")

B (coshi + cosp)? (coshi + cosp)?

1 z
= \/(1+ coshAcosp)? + sinh2\ sin®p

3 (coshA + cosp)?

Notice that (10) is equivalent to the last equation in (4). Thus, the
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same algebra applies.

1
(11)  h =h =
i coshA + cosp

Repeating the process for € »

JoF

12) e, - 00 _ (-rsing, rcosgp , 0 )
OF | \/r2(cos?g + sin?)
do

So

(13) h¢ = |

Now we are able to substitute into our general formulas for the line
element and Laplacian.

Recall
2_h2 2 2 2 2 2
ds= = hfdug + hydus + hydug
The line element in Ring Coordinates is

2 2

1 1

(14) ds2= da2 + dp? + réde?
coshA + cosu COShA + cosp

and given r = Sinh , we have verified that

coshA + cosp

2 2
. ,{M ; d(sz

sinh2\
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Also recall

h,h h.h h.h
vey = 1 J 23 dU N dJ 1N3 dU N 0 1Mo U
h.h,h au1 h1 8u1 au2 h2 au2 au3 h3 aus

1723

The Laplacian in Ring Coordinates is

2
(15) VvaU = (el + EOs a[ra‘UJ a2 i[ryJ +
r al an ) aul o
99\ r(coshi + cosp)2 0
Since

sinhA
CcoshA + cosu

we get
inh
cOshA + cosp = sinhi
"
and then
inh2\ 1 92U
(16)  vayu =" i{ryJ + i[ryJ -
r3 (0AL dA ) dul du) r(coshi + cosp)? dp2
and
1 B 1 = e
r(coshi + cosp)? rsinh2l sinh2)
r2
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Therefore, we have verified the Laplacian in Ring Coordinates.

- 2
(17) Ve = L i{rqu + i[rigJ el E
r3 oA A ) oul du)  sinh2p 92

3.2 The Helmholtz Differential Equation

Curvilinear coordinates are commonly used in solving elliptic partial
differential equations, especially in situations where the process is
simplified when converted from Cartesian coordinates to a more
suitable coordinated system. Elliptic partial differential equations have
applications in almost all areas of mathematics, from harmonic
analysis to geometry to Lie theory, as well as numerous applications in
physics [9].

The Helmholtz differential equation
V2F + k°F = 0

is one example of an elliptic partial differential equation. When k = 0,
the Helmholtz differential equation reduces to Laplace’s equation.

The Helmholtz differential equation can be solved by separation of
variables in eleven coordinate systems, ten of which are particular
cases of the confocal ellipsoidal system. As part of my research, |
chose to demonstrate separation of variables for the Helmholtz
equation using parabolic coordinates and elliptic cylindrical coordinates.
The approach of separating variables does not solve the equation, but
makes the solution “easily” obtained with techniques for solving
ordinary differential equations.
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3.2.1 Parabolic Coordinates

Our goal is to separate variables in the Helmholtz differential equation.
V2F + k®F = 0

by substituting the Laplacian in parabolic coordinates into the equation

for V2F, where F is a function F = F(u, v, 0).

Parabolic coordinates are defined as follows:

(1) X = uvcoso
Yy = uvsin®

Z= é(u?— - v?)

Let r = (x, y, 2. We find the base vectors e, €, e, and scaling
factors h, h, h, in order to determine the Laplacian.

or
du ( vcosh , vsing, u ) P 2
e = = , where h =\uc+v

du

ar
dv ( ucosO , usino, v ) P 2
e = = , Where hV:\/u + Vv

N

dv

ar
1 = do (-uvsind , uvcoso, 0 ) R
el et

do
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Now we are able to find the Laplacian in parabolic coordinates.

2 /2
2  VF-— i{uvﬁJ+i[uvﬁJ+ i[“‘ g @J
uv(u? +v2){ du\  du avi oadv) 96\ uv 40

Using the product rule of differentiation, our result is

V— + UV—— + U— +

2 2 2 2y 22
3)  VeF - 1 oF 0°F oF uvaF+(u +v2) 92F
Ju au2 ov ov2 uv 902

uv(u? +v2)

Simplifying equation (3) gives,

(4) V?F = +— 4+ +
u2v2 902

1 |19F 9%F 10F 9°F| 1 0%
uoau gu2 VoIV  gy2

(U2 +v2)

So the Helmholtz equation in parabolic coordinates is

+K2F = 0

1 [H)F PF  10F 82FJ 1 0%F
(5) -+t + ——+ +

(U2 +v3){Udu  gu2 VIV  gv? u2v2 902
Attempt separation of variables by letting

(6) F(u, v, 0) = Uu)V(v)0(0)

be a solution to the differential equation. Then the Helmholtz equation
(5) becomes

(7)

(U2 +v2) udu du? vdv o dv? u2v2 de?

7 2 2
L [VB[1£+QJ+U9[1(N+CIVJJ+ UVde+k2UV6:0
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u2y2
Multiplying equation (7) through by —— ,

uvo
(8)
2,2 2 2 2
uv l[ld_U+ﬂJ+l{1ﬂ+ﬂJ+119+k2u2\,2:0
(u2 +v3)| Ulu du  du? Vivdv dv2 0 do?

In equation (8), we have separated the Helmholtz equation into a
function G(u, v) and a function H(6). Consequently, H(0) must be equal
to a constant. More specifically, H(0) = -G(u, V).

d20 :
Let H(®) = ——— = -m?2, where m is a real.
0 do?

(U2 +v2)

Substituting into equation (8) and multiplying by -
usv

(9)

2 2 2 2
Uludu du2) VIvdv dy? u2v2

2 yy2 1 1
Rewriting (u=+ ): — + J gives,
u2v2 uz v

(10)

2 2
[1[1£+QJ+1LLﬂ+ﬂJJ_m2£1_+L]+ ks
Uludu du2) VI{vdv dy2 uz  v2

Equation (10) can now be rearranged into two terms, each containing
only u or v.

(11)

2 2 2\ 2
Ulu du  du? u@ Vivdv dv? v2



We have succeeded in separating the Helmholtz differential equation
using parabolic coordinates into three independent functions.

3.2.2 Elliptic Cylindrical Coordinates

Elliptic cylindrical coordinates are defined as follows:

(12) X = axcosh(u)cos(v) O0<u<oo
y = axsinh(u)sin(v) where 0<v<22n
Z=2Z —c0 <7 < o0

In this transformation, the v coordinates are the asymptotic angle of
confocal hyperbolic cylinders symmetrical about the x—axis. The u
coordinates are confocal elliptic cylinders centered on the origin.

Let r=(x, y, z). As usual, we will begin by finding the base vectors and
scaling factors.

ar
e - du  (axsinh(u)cos(v) , axcosh(u)sin(v), 0 )
! 'ﬂ ' \/a2(sinh2(u)cos2(v)+ cosh2(u)sin2(v))
du

and so,

h, = a\/sinhz(u) + sin2(v)

Note, the algebra to reduce h is shown below. Recall that
cosh2x — sinh?x = 1.

sinh?(u)cos?(v) + cosh2(u)sin?(v)
= sinh2(u)(1 - sin?(v)) + (1 + sinh2(u))sin?(v)
= sinh2(u) - sinh2(u)sin2(v) + sin?(v) + sinh2(u)sin2(v)
= sinh2(u) + sin2(v)
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Computing the base vector e,

ar
o = dv _ (-axcosh(u)sin(v) , axsinh(u)cos(v), 0 )
! ar \/az(coshz(u)sinQ(v) + sinh2(u)cos2(v))
dv
Notice
h,=h, = a\/sinhQ(u) + sin?(v)
Also
_ELr
1
e = dz _ (0,0,1)
g 1
0z
and
h =1

The Laplacian in elliptic cylindrical coordinates is

(13)
o 1 RO
a2(sinh2(u) + sin?(v)){ du\duj av{av
i[ sinh?(u) + sin®(v) oF
0z 1 0z
Simplifying,
2F  92F | 9°F
(14) VeF = 1 L I
a2(sinh2(u) + sin?(v)){ ou2  9v2 | 9z2
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We can now substitute the Laplacian into the Helmholtz differential
equation, V2F + kF =0 .

(15)

+ +k2F =0
a?(sinh2(u) + sin(v)))| ou2  9v2 dz2

1 [BQF 82FJ PF
+

Let

(16) F(u, v, z) = UuVmZ(2)

Assuming F(u, v, z) is a solution of the Helmholtz equation, (15)
becomes

2 2 2
(17) Z vEY L UYL v euvz o
a2(sinh2(u) + sin?(v))| du? dv?2 dz2
Divide by UVZ
2 2 2
- 1 TR V| 1wz,
a2(sinh?(u) + sin?2(v)){ U duz V dv2 Z dz2

The equation is now separated into a function G(u, v) and a function
H(z). We can conclude that H(z) is equal to a constant, H(z) = -G(u, v).

1 d2
Let H(z) = —E =—(k?+ m?) , where m is a real.

Z dz?

Substituting into equation (18) and multiplying through by
a2(sinh?(u) + sin?(v)) gives

2 2
o) (1dU+1dV

— m2a2ceinh2 a2
U duz Vdv2J m=a=(sinh=(u) + sin4(v))
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Thus

e 2
(20) L m2a2sinh2(u) | = | m2a2sin2(v) - 18N
U du? V dv2

We have shown that the Helmholtz differential equation is separable in
elliptic cylindrical coordinates.

Page 28



4. CONCLUSIONS

Along with many mathematical processes, the utility of curvilinear
coordinates in solving partial differential equations has long been
replaced by technology’s high speed numerical analysis. Its physical
interpretation, nonetheless, cannot be overlooked. Gauss had a vision
of freeing a world confined by a rectangular grid. His forward thinking
and the creation of curvilinear coordinates helped the intellectual
community to see mathematics from a different frame of reference.
Einstein also recognized the significance of curvilinear coordinates in
representing the physical world.

By generally deriving properties of a surface in curvilinear
coordinates, we are able to attain information about the surface
simply by knowing the transformation from Cartesian coordinates to a
new system. The importance lies in the base vectors of the coordinate
system at each point and their corresponding scaling factors. This
data allows us to easily compute the volume, gradient, divergence, curl,

and Laplacian.

Orthogonal curvilinear coordinates are usually applied to physical
problems. Mathematicians and physicists find these transformations
from the Cartesian coordinate system especially useful when solving
partial differential equations that model physical attributes of a
curved surfaces. The Helmholtz differential equation, for example,
models resonance, the acoustic effect that boosts volume in a drum
or bottle shaped object. The technique of separation of variables can
be used in solving Helmholtz's equation in 11 different orthogonal
curvilinear coordinate systems, including the parabolic and the elliptic
cylindrical coordinate systems.
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APPENDIX A: CYLINDRICAL COORDINATES

The derivation of the following mathematical quantities utilizes the
general derivation discussed in Section 2. It is shown here as a familiar

resource.

Transformation:
X = r*C0Ss0
Yy = r«sino

Z=1Z

and

Letr = (x, vy, 2).

Base Vectors and Scaling Factors:

ﬁ
e = o = { €050, 8108, U ) = ( coso0, sino, 0)
ar \/cos20 + sin20
ar
ﬂ
—rsin® 0,0
e, = a0 _ ( —rsin@, rcoso, >=(—sin9, c0s0, 0 )
ar r \/sin20 + cos20
d0
ar
0z 0,0, 1
e, = =( >=<010|1>
B0 L
0z
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where

r

0

=5 J
Il
—_ =

Il

z

Line Element:

ds2 = h2dr2 + h2d02 + h 2dz? = dr? + rdo? + dz?
Volume Element:

dV = h h,h dr2de2dz? = rdrdodz
Gradient of A(r, 0, 2):

1 aA 1 oA 1 JA
r eB ez
h dr h a0 h, 0z

_/ 9A 10A 0A
ar r 90 9z

Divergence of A(r, 6, 2):

VA = —

1 0 d d
divA=——A,hh)+—(A,hh)+—(A,hh

1| o 0 0
- H2Aan+s 2@+ L
rlar( 0 ae( 2)J+ az( J

1
r ar( 1) r ae( 2) aZ( 3)
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Curl of A(r, 0, 2):

e |9 P e |9 p)
ol A= — | — (A = — A | e —e] =B Y = — AN
hOhZL ghy) 2z 2 B{J hzhr[az( 10 = 5 s QJ

e, | d
+ ——| —(A,h) - —(A;h
hrhglar( 20) 5 e

0]

€| o d J d
1a=—"%ny- 2@ 2 A =L
o rLaB( ¥ az( 2r)JHeB[az( # ar( S)J

€l 0 Jd
2 A - 2
’ r[ar( 2" ae( 1)J

and further

1 0A JA dA dA A JdA dA
curl A= |——2 % e, + S PO e, + B - P
r 9o 0z 0z or r or 0 | Z

Laplacian of A(r, 0, 2):

vea~ 1| 9 NaMoA ] afhh 9A | o iy oA
hhoh | arl h ar ) el h, a0 ) az( h, oz

r

1] o aAJ a[1aAJ a{aA
R Ry | chomunk [ ooy vl 36 w1l st
ri arl ar d0l r 90 d0z\ 0z

10A 02A 1 92A 02A
==t ——— + ——
rar  a9r2  r2 902 9z2
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APPENDIX B: SPHERICAL COORDINATES
Transformation:

X = r=sinbcos¢

y = rxsin@sing

Z = r=coso

and

r=\x%+y2+ 22

0= tarr‘(iJ
X
2 2
o qu[uJ i COSTH
r r

Letr = (x, Yy, 2).
Base Vectors and Scaling Factors:

( sinBcos¢y, sindsing, coso )

e =
.
\/sinzecos2¢ + sin20sin2¢ + cos20
= ( sinBcosy, sinBsing, coso )
o = ( rcosbcos¢, rcososing, —rsinod )

o ; s
r \/cos20c0s2p + rcos20sinZy + r2sin

= ( rcosfcos¢, rcososing, —rsino )

( —rsin@sing, rsinécos¢, 0 )

r \/sinzesin% + 8in20cos2¢

= ( —rsin@sing, rsindcos¢, 0 )

Page 34



where

hr:1
hezr
h¢:rsrne

Line Element:

ds? = h2dr2 + h2do2 + h¢2d¢:2: dr? + rdo2 + r2sin20d¢?
Volume Element:

dV = hhgh,drdedo = r?>sin0drdodo

Gradient of A(r, 0, ¢):

10A 10A  10A
er + ——ee +**'e¢
h,or " hy 20 ° h, 3

_/9A 10A 1 0A
ar r 90 rsind o

Divergence of A(r, 0, ¢):

. 1 (9 d )
div A = [-(Ameh o 5gAhihy + a(p(AshrhO)J

Ngh, ar
1 d d
= i(A1r23in2(-)) + —(A,rsing) + —(A,r)
rsin20| or 20 )
2sin0 dA coso 1 OJA 1 OA
= A, + sinb Lig e Apeti— £y =
r ar  rsin2o rsind 90  rsin20 9¢
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Curl of A(r, 0, ¢):

e
curl A = hi (Aghy) - ¢<A2h9>J

€ | o e | o 0

—2 | = (A.h A.h ¢ Ah) — —(A,h

+ hq)hr[a(j)( 1 l’) ( 3 ¢)J hrhelar( 2 9) ae( 1 r)J
SO
1 0 . d

curl A = e Lae(Asrsme) - £(A2r)Jer

1 d 0 1] 0 d
—(A;) - —(A,rsin0 —|—(A,n - —(A) e
+rsine[a¢( i ar( il )Je9+r{ar( 2" 88( T)J ¢

and further

aA3 aA
A30059 + sinp——= - —= e,

curl A =
rsinZo 20 o0
1 | 9A 0A 0A dA,
+ —1—A3|ne—r31n9~—3e+1A +r—2—ﬁ—e
rsind@{ dJo or r ar d0

Laplacian of A(r, 0, ¢):

. Lg£h9h¢MJ+Q[hrh¢% L “r“e_a_eJJ
¢

h, 8 aol h

ro r 0 (0]
1 A
= —?—ersine%J + —a—[sinea— o %J
r2sino| dr or) 00 00 ) 3¢\ sind 99
0%A oA  92A oA 1 92A
=ﬁ_%+2r—+—+ ot0—— 4 i
r2|  ar2 ar 902 90 sin2p 9¢2
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