Reed-Solomon Codes: Construction & Decoding

Samuel J. Parsons

December 2007

1 Historical Background

In 1948, Claude E. Shannon published “Mathematical Theory of Communication” [1] beginning the field of
coding theory. He explained and proved the existence of error-correcting codes with a theorem now known
as Shannon’s theorem. Not only did he introduce the concept of error-correcting by adding extra data, but
also coined the word bit and reinforced the concept of transmitting information digitally by sending 0's and

1’s through a channel.

“Shannon was the person who saw that the binary digit was the fundamental element in all of
communication. That was really his discovery, and from it the whole communications revolution

has sprung.” R. G. Gallager

Concurrently with Shannon’s research, Richard Hamming “introduced an elegant approach to single-error
correction and double-error detection” [2).! These two discoveries led to a plethora of research and exper-
imentation with coding theory over the following years culminating in Irving Reed and Gustave Solomon’s
ground-breaking results in “Polynomial codes over certain finite fields” [4], published in 1960. The polynomial
codes they described are known as Reed-Solomon codes. When Reed-Solomon codes were first introduced the
technology was not yet available to implement them. However, as the technology advanced the application
of the theory become more and more prevalent. Reed and Solomon’s research laid the groundwork for many

of the error-correcting techniques that we use today.

“When you talk about CD players and digital audio tape and now digital television, and various
other digital imaging systems that are coming — all of those need Reed-Solomon codes as an
integral part of the system.” - Roberi McEliece, Caltech [2]

Irving Reed is now a professor of electrical engineering at the University of Southern California and
continues to research coding theory. He has published more than 300 papers and several books, and has won
numerous awards. “Reed was one of the first to recognize abstract algebra as the basis for error-correcting
codes.” [5, p. 538] Gustave Solomon met Reed at the MIT Lincoln labs where they published their paper

1See [3] for a simple explanation of single- and double-error detection.

together. Later, Solomon went to the Jet Propulsion Laboratory for NASA and taught at UCLA, UC
Berkley, and Caltech before passing away in 1996. Reed-Solomon codes are still being used and active
research continues. In the past 10 years, there have been significant improvements in decoding algorithms
for Reed-Solomon codes with results from Sudan, Guruswami, and others.

2 Introduction

The goal of coding theory is to communicate data with fidelity across interference-ridden channels. We
transform the data into a code using a set of rules (encoding) and then transmit the data across some
channel. Once the transmitted data is received at the destination we attempt to determine the original data
(decoding). In encoding, we aim to add just the right extra data so we can correct a reasonable number of
errors while not drastically increasing the amount of information that must be transmitted or the complexity
of the decoding algorithm. Although the concepts we will investigate indeed are abstract, they must be

coupled with a realistic understanding of the constraints involved in real-world problems.

Most simply, a code is a mapping from one set of elements to another. In coding theory we choose to
map our original data to a set of codewords that are longer than the original words. This length allows
for parts of the words to be lost or compromised while leaving enough of the codeword intact that we can
still identify what it represents. The challenge is to add enough data so that we have this error-correcting
property and not so much that the code becomes cumbersome or increasing the likelihood of error. Over the
past 50 years, researchers have developed various codes and improved upon them substantially; still, there
is no one-size-fits-all code. Since we are always dealing with limitations in either time or space, tradeoffs
must be made. The variables of a particular situation will suggest which code is ideal or perhaps that a new
one needs to be developed. We will focus on a class of linear block codes called Reed-Solomon codes. The
structure of these codes can be leveraged to efficiently correct errors that occur during transmission of data.

Before looking in detail at Reed-Solomon codes we will give some fundamental definitions and theorems

that apply to linear block codes and coding theory in general.

2.1 Fundamentals

Throughout this paper, we will work over a finite field, F; where g is the power of a prime. The simplest
field is the binary field, F; = {0, 1}, but as we will find, larger fields are often used to define Reed-Solomon

codes.

Definition 2.1. A linear block code, C, of rate k/n, is a k-dimensional subspace of F;‘. We call this an

(n, k) code.

Since a code is a vector space, we can represent any codeword ¢ in the code as a linear combination of

the basis vectors. For example, given the basis of C:

by =|bu bz bis .. bln]

bzz{bgl bay baz .. bsz

by = [b bra bk .. bkn]
we can write an arbitrary codeword ¢ as:

c=di| by bz b1z .. bln}-kdg[bgl B Bag v bgn]+...+dk[bk1 bgg g o B

with d; € IFg.

We can also construct a k x n generator matriz, G, using the basis vectors as rows. This allows us to

make the mapping from IF'S‘ to [} relatively easily in the form of matrix multiplications.

bi1 bz b1z ... big

b b b eo bop
Go | b bz b 2

b1 bz bkz .. bin

Recall from linear algebra that generator matrices are not unique. A generator matrix must have an
independent set of k& columns which we call the information set and all other generator matrices of the same

code will have the same information set. [6, p.7]

Definition 2.2. If C is a linear block code, then we define C'* as the dual code of C where:

Cl={veF' vec=0,Yce C}.

A parity check matriz H of a code C is an n x (n — k) matrix whose rows generate the orthogonal
complement of C. The rows of H generate the null space of the generator matrix &, and H is also a
generator matrix for the code Ct.

When it comes to decoding it is important to be able to measure by how much two vectors or words

differ. Hamming distance is a simple method of measuring this difference.

Definition 2.3. The Hamming distance, or simply distance, between two words of the same length, wy and
w3, denoted D(wy,ws), is the number of places in which the components of w; and ws differ. The weight

of a word is the Hamming distance between it and the zero word.

The distance between any two distinct words is non-negative, and D{w1, wz) = 0 if and only if w; = wa.
Clearly, by definition D(w1,wz) = D(wg,w1). Also, it can be shown with induction that it satisfies the

triangle inequality. Together this shows that Hamming distance is a metric.

The error-correcting capability of a code is determined by the minimum distance between codewords.

Definition 2.4. The minimum distance of a code C is the largest integer d such that D(cq,cz) > d for all

codewords ¢, cz € C with ¢ # ca.

Let’s imagine that the codewords in a code are points in a three-dimensional space and draw a sphere
of radius r = d/2 around each point, we will have set of spheres that may touch but they will not intersect
since d is the minimum distance between any two points. Now, consider that we receive a codeword that
has just been transmitted. It may contain some errors. We take its value and mark its coordinate in this
imaginary three-dimensional space. If less than d errors occurred in transmission, then the coordinate will
still be in the sphere belonging to the correct codeword. And so, although we encountered some errors, we
are still able to determine the original data that was sent. This analogy helps make it clear that codes with

a greater minimum distance are more desirable since they are able to correct more errors.
The Singleton bound establishes a useful relationship between n, k, and the minimum distance:
Theorem 2.1. [7, p.1] The minimum distance, d, of an (n,k) code salisfies the following inequality: d <

n—(k—1).

Proof. Just project all the codewords on the first (k — 1) coordinates. Since there are ¢* different codewords,
by the pigeon-hole principle at least two of them should agree on these (k — 1) coordinates. But these then
disagree on at most the remaining n — (k — 1) coordinates. And hence the minimum distance of the code C

isd<n-— (k—1). O
Note that we are not guaranteed the existence of a code that satisfies the Singleton bound with equality
for all n and k. In fact, we have a special name for those that do.

Definition 2.5. An (n, k) code is mazimum distance separable (MDS) if it satisfies the Singleton bound

with equality: d =n — (k —1).

2.2 How to use a code for error correction

Following is a basic method for using a code C' for error correction [8, pg. 2]:

1. We are given some data to encode as some vector u of k elements from a field F; u € F*,

2. We then encode this vector u by mapping it to a codeword v € F*. This can be accomplished by

multiplying by a generator matrix G. For example, v = uG.
3. We transmit the codeword v; errors may occur during transmission.
4, We receive a codeword w = v + e where e € " contains the errors that occurred during transmission.
5. We attempt to recover v given w by finding the closest codeword c € F* to the vector w.
6. The original data is determined by finding the d € F* such that ¢ = dG.

Finding the closest word often turns out to be non-trivial and so most improvements and enhancements

are accomplished by making changes in how step 5 is computed.

3 Reed-Solomon Codes

Reed-Solomon codes are ideal for situations where the majority of errors occur in bursts as opposed to being

uniformly distributed; this is a common attribute in various channels.

For any parameters n, k,and d =n — k+ 1 with (1 < k < n) and a finite field F,, there exists a (n, k, d)
Reed-Solomon (RS) code over F,; so long as n < g+ 1. [9, p. 103]. Since n < g + 1, codes over the binary
field 5 are limited to length three and are not particularly interesting, so we usually consider non-binary
RS codes over the field Fy, where ¢ can be quite large. [9, p. 103]. In channels where it is convenient to

transmit binary m-tuples, we let ¢ = 2™, with IF, forming an extension field of 5.

RS codes form a large class of MDS codes; also for any (n, k) MDS code over some field I, there exists

an extended (or doubly-extended) RS code with the same parameters. [9, p. 103].

Reed-Solomon codes can be represented in several different ways. We will present them as evaluation
codes which will be useful for the purpose of this paper, but they can also be represented as duals of evaluation

codes and as cyclic codes. The other presentations are useful for other decoding and encoding systems.

3.1 RS codes as evaluation codes

A RS code is a mapping from words which are k-tuples in the field]Féc to codewords which are n-tuples in the
field Fy. The standard (or punctured) code is found by setting n = g — 1. Codes withn=g¢, andn=g+1
are called extended, and doubly-extended RS codes, respectively. Using a k x n generator matrix like the

following is one method of performing the mapping from IF"; to IFy.

[1 1 1 i
1 a a? ol an1
I @l ik o a2
G (3.1)
|1 ohl gk g3 gk J

where o is a primitive element in the field Fy. [8, p.3] A primitive element in a field is a generator for
non-zero field elements — the field ;. The benefit of using this particular generator matrix is that we can
easily compute the matrix multiplication by means of simple polynomial evaluation at the field elements. By
noticing that we may obtain the ith row of G by evaluating the polynomial z* at the field elements a;, we

arrive at a succinct description of the codewords independent of the generator matrix:

RS[n=q— 1,k,d] = {(f(a°), f(a!), f(&?), ..., F(@" 1)) : f € Fy[z] and deg f(2) < k}

There is a unique polynomial f(z) corresponding to each element of F%, but the field elements at which

we evaluate the polynomials will remain fixed. This is summarized in the following theorem.

W

Theorem 3.1. [9, p.104] The ¢* n-tuples generated by the mappings f(z) — {f(a?),0 < j < n} form a
linear (n = g-1, k, d= n-k+1) MDS code over F,, where o is a primitive element in Fy and the polynomials

f(z) € Fy[2] have degree less than k.

Proof. The code is linear because the sum of the codewords corresponding to two polynomials fi(z) and
fa(z) is the codeword corresponding to the polynomial f;(z) + f2(z), and the multiple of the codeword

corresponding to f(z) by 8 € F, is the codeword corresponding to the polynomial 8 f(z).

A codeword has a zero symbol in the coordinate corresponding to f; if and only if f(5;) = 0; ie, if and
only if 3; is a solution of the equation f(z) = 0. By the fundamental theorem of algebra, if f(z) # 0, then
since deg f(z) < k — 1, this equation can have at most k& — 1 roots in F. therefore a nonzero codeword can
have at most k — 1 symbols equal to zero, so its weight is at least n — k + 1. Since the code is linear, this
implies that its minimum distance is at least d > n — &k + 1. But by the Singleton bound, d < n —k+1; thus
d=n—Fk+1. O

Example. Let’s look at a standard (punctured) RS code where n = g — 1. Let ¢ = 4, then n = 3, and we’ll
let k& = 2. Since RS codes are MDS, d = n—k+1 = 2, and so we have a (3,2,2) RS code. We will be working
over the field IF4. Recall that addition and multiplication in this field can be defined by the following tables.

+]10 1 a o *10 1 a of
010 1 a o 0|10 0 0 0
1 1 0 a? « 1 10 1 a o
ala o 0 1 a |0 a o 1
a?la® a 1 0 a2 |0 o 1 «a

Taking vectors of length k = 2, the following mapping yields codewords of length n.
RS[3,2,2] : f(2) = fo+ frz = (f(@°), (@), f(a?))
where o € Ty is primitive, f(z) € Fy[2] and deg f(2) < 2. The following is equivalent:

(fo, i) = (fo + /1d°, fo + fra', fo + fi1a?)

Using the two generators go = (1,1,1) and g1 = (1, @, @), which are a basis for the vector space we wish

to create, we can build the following generator matrix.

1 1 1
G =
1 o &
This code has 16 codewords since each of fg and f; can range over the four elements of Fy. By multiplying

the possible input vectors by the generator matrix we arrive at the following coding map.

W

(D: O) = (0) 01 O} (O‘, U) L d (CY, o, CY)
(0, 1) — (1, a, a?) (e, 1) — (a? 0, 1)
0, a) — (o, a? 1) (e, @ +— (0 1, a?)
0, o) ~ (a% 1, a) (@, a?) = (1, a2 0)
(L, 00 ~ (1, 1, 1) (@, 0) +— (a?, a? o?)
(1, 1) ~ (0, o a) (@, 1) o (o 1, 0)
(1, a) » (% a 0 (@ a =~ (1, 0, o)
1, o) ~ (o, 0, o? (@®, o) — (0, o 1)

This map tells us how to map every input vector into a codeword which we can transmit.

4 The Guruswami-Sudan Algorithm

The decoding algorithm that initially brought popularity to the RS codes was the Berlekamp-Massey al-
gorithm which is algebraic in approach and is probably the most famous of those available. Since then
many others have been developed. We will look in depth at the Guruswami-Sudan (GS) decoding algorithm
devised initially by Sudan [10] and then further developed in collaboration with Guruswami [11]. The GS al-
gorithm is particularly interesting because it can decode RS codes often significantly beyond the conventional

error-correcting bounds.

Typically, given an RS code with minimum distance d, we are guaranteed to successfully decode up to
to = [(d — 1)/2] errors. Recall the previous analogy of the spheres. If we have a minimum distance d, then
the centers of these spheres are at least d apart, and we can safely use to = [(d — 1)/2] as the radius of the
spheres. However, some spheres could have a larger radius and still not intersect other spheres. What is
the probability that by increasing the radius of the sphere we would decode words incorrectly? Sudan and
Guruswami [11] found that in many situations this probability can be very small and thus gives us the ability
to correct up to tgg =n—1 — [WI;T)J errors without making the probability of incorrectly decoding

prohibitively large [11, p.12].

4.1 Algorithm Sketch

Assume that we have transmitted a codeword ¢ = (f(a®,), f(a?),..., f(@™!)) and we received the word
r = (8,1, ..., Ba—1). The original codeword was found by evaluating some polynomial f(z) of degree less
than k at the n non-zero field elements, a®, a!,...a” . By definition the coefficients in the polynomial f(z)
correspond directly to the components of the original vector in }Ff; that we wish to encode. Given r, the

algorithm indicates that we can find a polynomial p(z), so that the following holds.
[{i : p() # Bi}| < tm,

where (,,, is the number of errors that we can decode, and ¢, > to = [d/2|. The GS decoder has a variable

m that specifies the multiplicity to be used in the interpolation step. The number of errors that can be

W

corrected, t,,, corresponds with this variable. In [12] McEliece identifies the two main parts of the algorithm:

1. The interpolation step: Given our received word, r = (8g, 51, ..., Bn—1), we construct a two-variable

polynomial
Qlz,y) =) aiz'y
ij

so that ¢) has a zero of multiplicity m at each point (af, 3;) and the (1, %k — 1) weighted degree (which
we will define) of Q(x,y) is as small as possible.

2. The factorization step: We then find all factors of Q{z,y) of the form y — p(z), where p(z) is a
polynomial of degree k& — 1 or less. The list of all these factors is

L= {pi(z),..,pL({z)}.
L is a set of polynomials each corresponding with a vector or codeword in the Fy}; there are three types:

(a) The transmitted, or causal, codeword
(b) Plausible codewords which are within Hamming distance ¢,,, from r

{(c¢) Implausible codewords — those at a distance > ¢, from r.

If less than t,, errors have occurred, then the list £ will include the original word. If there is only one
codeword (or polynomial) in £, we decode the received word as that. If there is more than one codeword in
L, then we must decide which one to decode as. We will now fill in some background theory before stating

the algorithm more completely and substantiating these claims.

4.2 Some Theory of Two-Variable Polynomials
4,2.1 Monomial Orderings

If we have a two-variable function Q(z,y) € Flz,y|, we can write

Q) = Y gy (4.1)

,§>0
It is clear that @Q(z,y) is a sum of monomials and is two dimensional. As part of the algorithm we have
to build a two-variable polynomial and we have to solve a system of constraints for the coefficients of the
polynomial. It is helpful to have a one-dimensional ordering on the monomials in order to solve this system.
Also, the notion of monomial orderings will come up throughout our discussion. We denote the set of all

monomials of two variables as:

Mlz,y] = {z'y’ 14,5 > 0} (4.2)

The set M|z, y] is isomorphic to N? under the bijection (ziy?) > (3, j).
Definition 4.1. [12, 3-1] The following properties hold for a monomial ordering ‘<’ over a set M, with
a,b,c € M.?

1. If a1 < by and ap < by, then (a1, az) < (b1, b)), where a = (ay,az) and b = (b1, ba)

2. If a, b are distinct, either a < b or b < a (total ordering).

3. Ifa<b,thena+4+c<b+c

We will use a type of monomial ordering called weighted degree (WD) orderings. To construct a two-
variable WD ordering we need a vector with two non-negative integers, w = (u,v), at least one of which

must be greater that zero.

Definition 4.2. [12, 3-1] For a fixed w = (u,v), the w-degree of the monomial z'y? is:

deg,, =y’ = ui + vj

The following example makes it clear that if we were to use the standard w-degree on Mz, y] we would

only achieve a partial ordering with distinct elements having the same order.

Example. Let’s look at the w-degree of some polynomials for w = (1,3) and w = (0,1) respectively.

monomial degi3 degoa

x 1 0
x? 2 0
3 3 0

y 3 1
Ty 4 1
z* 4 0

2%y G} 1
° 5 0
28 6 0
3y 6 1
y? 6 2

We can see that deg) 32° = deg; 39 and degy; = = degy, 2* so these orderings are not monomial
orderings since they are only partial. There are two ways that we can modify w-degree to satisfy the
requirement that it be a total ordering: w-lexicographic (w-lex) order, and w-reverse lexicographic (w-

revlex) order.

2Assume that the dimension of M is 2. The general case is analogous.

Definition 4.3. [12, 3-2] w-lex order is defined as follows.
i yjl < gt yjz

if either ui; 4+ vj; < wia + vja, or wiy + vj; = uiz + vja and i) < ip. w-revlex order is similar, except that
the rule for breaking ties is 4; > i2. (In the special case w = (1,1), these orderings are called graded-lex, or

grlex, and reverse graded-lex, or grevlex, respectively.)

Example. In the previous example, with w = (1, 3), the w-lex ordering is
m<$2<y<$3<$y<z4<3:2y<m5<y2<m3<:c6...

and the w-revlex ordering is

s<?<P<y<ai<ay<as®<rly<ab<aly<if<..

With w = (0,1) (referred to as a y-ordering), the w-lex ordering is
r<a’<. .. <y<ay<ziy<. <yi<zy® <zl <..
and the w-revlex ordering is

<t <r<. <y <aty<ay<y<.. <P <aP <t <yP<

Be defining a monomial ordering 1 = ¢o(z, %) < ¢1(z,y) < ..., where each ¢ corresponds to a unique

monomial, a two-variable polynomial can be defined in terms of it. For example:

J
Qz,y) = Y _ a;d;(x,y)

=0

Under this ordering, the leading monomial (LM), the one of highest degree, is LM(Q) = ¢j(z,y). In
this context deg Q(z,y) = deg LM (Q) = deg ¢s(z,y), and therefore rank of Q(z,y) is J.

Definition 4.4. The index of some monomial ¢ = 'y, denoted Ind(¢), in the ordering ¢o < ¢1 < ... is the
integer k such that ¢y = iy,

Example. Let’s look at the index of the first 20 monomials of the w-revlex order for w = (1, 3).

W’

) monomial deg Ind(xty’ i,7) monomial deg Ind(z?y?)
1,3 1,3

(4,5

(1,0) x 1 1 (0,2) y? 6 11
(2,0) x? 2 2 (7,0) z’ 7 12
(3,0) z? 3 3 (4,1) xty 7 13
(0,1) Yy 3 4 (1,2} xy? 7 14
(4,0) z? 4 5 (8,0) x8 8 15
(1,1) Ty 4 6 (5,1) zy 8 16
(5,0) z° 5 7 (2,2) 22 8 17
(2,1) z?y 5 8 (9,0) 37 9 18
(6,0) z8 6 9 (6,1) 28y 9 19
(3,1) 23y 6 10 (3,2) z3y? 9 20

In this case: Ind(z%y) = 16 and ¢16 = z%y. Also Ind(z%y?) = 20 and ¢2p = 2z%y?; and Ind(z?y) = 8§ and
ds = x?y.

It turns out that in the (1,v)-revlex ordering the numbers Ind(z*) and Ind(y%™) are important, so we
introduce the following notation®.

A(K,v) = Ind(z") (4.3)

B(L,v) = Ind(y") (4.4)

where we use an underlying (1, v)-revlex order. Since 2 is the first monomial of (1,v)-degree K, and y” is

the last monomial of (1, v)-degree vL, the following also hold.
A(K,v) = {(i,9) : i +vj < K}| (4.5)
B(L,v) = |{(,7) 1 i +vj < Lv}| — 1. (4.6)

Theorem 4.1. (12, 8-5] For K > 0, let r = K mod v. Then

K rlv—r)

K2
A(K,v) = % +) -+ 20 (4.7)
2
B(L,v) = % 4 % (4.8)

Proof. The equality (4.8) can be proved by induction. With L =1,

21
BLv)=[{(i) i +vi <o)~ 1=+ - 1=v+ 15+ 0= @4 2) =0t

We are given the induction hypothesis,

(- 17 (o 2)(L=1)
Bt 2

B(L-1,v)=

3This notation is due to [12]

10

W

and we can write
B(L,v) = B(L — 1,v) + |{(i,5) : (L— v+ 1 <i+wvj <L}

A little algebra yields the desired result.

oL -1 (v+2)(L-1)

B(L,v) = 1.
(L,v) 5 5 + ol +
_UL2+2UL+’U+(U+2)(L71)+2’UL 2
2 2 2 2
_ ng+ (w+2)(L-1) v 2 2vL+2vL
T2 2 2 2 2]
vL? (v+2)L
2 2

The validity of (4.7) follows from (4.5): for each j such that vj < K, ¢ must be in the range 0 < i < K —uvj,

so that
L&/v]

A(Kv) =) (K = jv)
j=0

T
=v) (T -j), where T = K/v.

Jj=0

Now we apply Euler’s summation formula, which implies:

L] T T T 1
Z(T—j):/ (T —z)dz+ = —/ {z — - }dz
izo 0 2 Jo 2
_ T {T31-{T})
=5 t3 5 (49)
where {z} = z — |x] is the fractional part of z. Eq (4.9) is equivalent to (4.7), since {T} = r/v. O

4,2.2 Degree and Rank

As noted earlier, we can write a two-variable polynomial in terms of a monomial ordering, for example,
Qz,y) = ijo aj¢;(x,y), where the coefficients ag,ay, ... are from some field F. If we wish to find the
(1,v)-degree and (0, 1)-degree or y-degree of Q(z,y), we recall that the degree of a polynomial is simply the
degree of the leading monomial in the corresponding ordering. We use the following notation to refer to this.

12, 3-4]
D(u, v; J) = max{deg, , ¢;(z,4) : =0, .., J} (4.10)

With this notation we can succinctly state the upper bounds for the (1, v)-degree and y-degree of Q(z,y) as
degy , Q(z,y) < D(1,v;J) (4.11)
dego,; Q(z,y) < D(0,1;J) (4.12)

11

A 4

For an increasing sequence of integers A = {0 = @¢g < a1 < az < ...} and a real number z > 0, we may
want to find the greatest integer in the sequence A that is less than or equal to the number z. We refer to
the index of this integer as the rank of apparition® of x with respect to A, denoted as 74(z) = K such that

ar < x < axyq. Alternately:
ra(z) =max{K :ax <z} =min{L:z <ar41} (4.13)
Theorem 4.2. [12, 3-4] With v fived, define sequences {ax = A(K,v)} and {by = B(L,v)}. Then
D(Lv:J)y=ra(J) (4.14)
D(0,1:J)=rg(J) (4.15)

Proof. This is just a matter of observing the fact that = is the first monomial of (1, v)-degree K and that

y" is the first monomial of (0,1)-degree L. O
4.2.3 Bounds
We will now find some bounds for A(K,v) and r4(z).
Theorem 4.3. (12, 8-5] Forv>1, K > 0,
K? (K +v/2)?
— < A(K, Pty .
2v (Kv) < 2u e

Proof. First note that A(K,v) = % + % + ﬂ%;—rl by result (4.7), and so the first inequality is true if
% + ﬂ% > 0 which is true for all K > 0 and v > 1. Moreover a strict inequality holds for K > 0.

Since A(K,v) = "2{—5 + £+ ’"(” ") and (K+’;/2) = ‘;"—; £+ -—-/—- the second inequality is true if

T(Z—;rl < ?—;—éﬂ. Since T—(-%l 1eaches 1t s max when r = v/2, r(” r) < (”/2)(” /3 - _va

O
Theorem 4.4. [12, 3-6] Forv>1, J >0,
[\/2UJ——J<?A(J [V2uJ] -1

Proof. This follows from combining the result (4.16) from Theorem 4.3 with the result (4.18) in Lemma 4.6

to follow. 0

Theorem 4.5. [12, 3-6] Forv>1,J>0

2J o232 v+ 2
rald) = T*(20) “(20)

4McEliece reports that this name was coined by Basil Gordon of UCLA.

12

and so

l@—v;QJSTB(JJS[i}—JJ

Proof. These facts follow from combining the result (4.8) with (4.17) in Lemma 4.6 to follow. O
Lemma 4.6. [12, 3-6]
If ap = f(K) where f(x) is a continuous increasing function of x > 0, then

ra(@) = lf7(=)]. (4.17)

More generally, if g(K) < ag < f(K), where f(z) and g(x) are both continuous, increasing functions of

z >0, then
()] < ralz) < g7 (=), (4.18)

Proof. Suppose K = r4(z). Then by definition,
9(K) Cax <z <ag4 < f(K+1).
Thus K < g7'(z) and f~!(z) < K + 1, ie. 7a(z) < g7 '(z) and f~1(z) < ra(z)+1, ie,
7 z)~1<rale) <g7'(2).

The desired result (4.18) follows immediately, if we recall that r4(z) is an integer.

4.3 Multiplicity of zeros in two-variable functions.

As you might guess, it’s somewhat difficult to visualize the graph of a polynomial over a finite field in
a traditional 3D diagram with Cartesian coordinates and so we must be satisfied with a rather abstract
understanding. A two-variable polynomial }(z,y) has a zero at a point (o, §) if Q{e, 8) = 0. Guruswami
and Sudan found that if we require multiple zeros, or singularities as they call them [11, p. 5], at certain
points when interpolating our polynomial, we can correct more errors with the same information. However,
increases in multiplicity correspond with an increase in the time it takes to process the resulting polynomial.
Definition 4.5. [12, 4-1] We say that Q(z,y) = Zal-,j;ciyj € F[x,y] has a zero of multiplicity, or order, m
g

at (0,0), and write

ord(@ : 0,0) =m, (4.19)

if Q(x,y) involves no term of total degree less than m, or a; ; = 0 if i+ j < rn. Similarly, we say that Q(z,y)

has a zero of order m at (¢,), and write

ord(Q: o, 8) =m (4.20)
if Q(z + a, y + B) has a zero of order m at (0, 0).

13

If we were to have a single-variable polynomial, we could quite easily determine the multiplicity at a given
point. However, when we move to two-variables this becomes more challenging. One method of discovering

the multiplicity of zeros at a given point is to use Hasse derivatives.

Theorem 4.7. [12, 4-1] Let Q(z,y) = Zai'jmiyj € Flz,y]. For any (a,) € I, we have

iJ

Qz+a,y+8)=Y Qnsla, By’ (4.21)
where
Qrs(z,y) = Z (:) (i)ai‘jri‘ryj_s Vrsstl<r+s<m (4.22)
4,7

which is called the (r,s)th Hasse (mized partial) derivative of Q{z,y). Note that:

QT'.S(av 18) = Coeffz",y!Q(‘r + Ct‘, y +)6) (423)

Proof. By the binomial theorem we have

(z+y)" i()”kk

k=0

If Q(z,y) Za”:czj' then

i,j

Qz+o,y+8) =) ajlz+a)(y+p)

)

A[B0=[% (Z)fﬁ”}

TEE)

i,j r=0s=0

=S £ ;) (oo
rs ij

= Z Qr.s{a: A=y’

Theorem 4.8. [12, 4-3] We also have

Q(z,y) = ZQT.?Q!B (Wi} (= 0)F

T8

14

.I\q“_,, |

22 Fixi=x™2+2

Figure 1: A simple example of interpolation.

Theorem 4.9. [12, 4-3] The polynomial Q(x,y) has a zero of order m at (o, B) if and only tf

Qr (e, 8) =0 for all r and s such that 0 < r+s < m. (4.24)

Proof. By definition, ord(Q : o, 8) > m iff Q(z + a,y + §) has a zero of order m at (0,0). But by Theorem
4.7, Q(z + a,y + F) has a zero of order m at (0,0) iff @, s(c,8) =0forall 0 <r+s < m. O

4.4 Interpolation Theorem

When we start decoding we are given the vector or word (g, £1, ..., Sn—1) which is the sent vector
(f(a™), f(al),..., f(@™™1)) after it has been transmitted and which may now contain some errors. Our goal
is to find the word corresponding to the polynomial f(z) that we used initially to attain the codeword. We
will achieve this by finding a list of polynomials so that when we evaluate them at the field elements we are
close to the received vector (Ho, 01, ..., An—1). First we will need to build a two-variable polynomial over IF,
by interpolating on the points {(a”, Bo), (a!, £1), ..., (@™, Bn-1)}.

The basic idea of interpolating is to find a function (and in our case a polynomial) that closely matches
a given set of data points. For example, given the points {(1,2.2), (2,5), (3,13), (4,17.1), (5,29)}, we can see
in Figure 1 that the function f(x) = 2 + 2 closely fits the data.

The Interpolation Theorem 4.10. [12, 5-1] Let m(e,) : (a, B) € F2 be a maltiplicity function and let
¢o < ¢1 < ... be an arbitrary monomial order. Then there exists a nonzero polynomial Q(x,y) of the form

C
Q,y) =Y _ aigi(z,y) (4.25)
i=0

where

15

O QZ; (m(oz,Q,@) + 1)

which has a zero of multiplicity m(a, 3), at (z,y) = (o, 8), for all (o,) €]F'ﬁ

Proof. By Theorem 4.9, Q(z,y) has a zero of multiplicity m at («,3) if and only if

Qr.s(e, 8) = 0 for all (v, s) such that 0 < r + s < m(a, §) (4.26)

There are (m(“'zﬁ)“) choices for (r, s) in (4.26) and by (4.22), each such choice imposes one homogeneous
linear constraint on the coefficients a;. In total there are C' such linear constraints imposed on the C +1
coefficients ag, ay, ..., ac. It follows that there must be at least one nonzero solution to this set of equations,
which corresponds to a nonzero polynomial Q(z,y) of the form (4.25) with the required multiplicities. O

Corollary 4.11. [12, 5-2] For any (1,v), there is a nonzero polynomial Q(x,y) with the required zero
multiplicities whose (1,v)-degree is strictly less that v/20C

Proof. Take {¢(x,y)} to be (1,v)-revlex order. Then by (4.25),

deg; , Q(z,y) < max{deg; , ¢;(z,y) : 7 =0,...,C} = deg,, ¢c(2,y) = ra(C),

where A = (ay) is the sequence Ind(z%), for (1, v)-revlex order. But r4(C) < v/2vC, by a straightforward

generalization of Theorem 4.4 O

4.5 Factorization Theorem

Definition 4.6. [12, 5-2] We define the @-Score of a function f € F[z] in relation to Q(z,y) € Flz, y] as

Sq(f) =) ord(Q: a, f(@)).

a€EF

For our purposes the Q-Score gives us a measure of how close (f(a°), f(a'), ..., f(@® 1)) is to (8o, b1, ...Bn-1)
for any f we should choose. Because of how we've built the polynomial Q(x,y), we can determine how close

a given codeword is to the received word by measuring the Q-Score.

The Factorization Theorem 4.12. (12, 5-2]

Suppose f(z) € Fz] of degree less than v, Q(z,y) € Flz,y|, and

Sq(f) > degi Q-

Then y — f(z) is a factor of Q(z,y).

16

“

Proof. Let Q(z,y) = Zi'j a; jx'y’. Then Q(z, f(z)) is a polynomial in a:

Qe f2)y= 3 aizatfla). (4.27)

1§20
Lemma 4.13. If f(z) € Flz] of degree less than v, then deg Q(x, f(x)) < deg; , Q(z,y).
Proof. For a;; # 0, deg(z' f(z)7) < deg(z'z*) =i+ vj < max(i +vj : a;; # 0) = deg, , Q(z,). O

Lemma 4.14. Q(x, f(z)) = 0 if and only if (y — f(2))|Q(z, y).

Proof. Let us view Q(z,) as a polynomial in y over the rational field F(z). Then by the division algorithm,

we can write

Qz,y) = Qo(z,y)(y — f(=)) + r(z), (4.28)
where r(z) € F(z). Substituting f(z) for y in (4.28), we obtain
Q(z, f(z)) = r(x),

so that Q(z, f(x)) = 0 if and only if r(z) = 0, which is equivalent to the stated result. O

Lemma 4.15. If ord(Q : o, f) = K, and f(a) = 3, then

(z —)*|Q(=, f(=)).
Proof. Using Theorem 4.8, we can express (z,%) as a polynomial in (z —) and (y — §):

Qla,y) =Y bijle - a)i(y - B).
¥}

Substituting f(z) for y, we have

Qlz, f(@)) = > bij(z — a)*(f(z) -). (4.29)
iJ

We know that f(o) = f, and so it follows that (z — a) divides (f(z) — 8). Moreover, (z —)"/ divides
(z — @) (f(z) — B)’. Since ord(Q : o, §) = K, the coefficient b; ; = 0 for all i + j < K. Therefore (z — a)*
divides every non-zero term of Q(z, f(z)), and so (z —) divides Q(z, f(z)). O

We can now complete the proof of the Factorization Theorem 4.12. By Lemma 4.15, we know that
[lacr(z — a)ord@ef(@) divides Q(z, f(z)). But by Lemma 4.13, the degree of Q(z, f(z) is (at most)
deg; , Q(z,y), and the degree of [, cp(z — a)ord(@:enf(@)) is So(f). Thus if Sq(f) exceed deg, , @, it follows
that Q(z, f(z) = 0, and so by Lemma 4.14, y — f(z) divides Q(=, y).

O

17

4.6 GS Decoder

McEliece [12, 6] introduces the following notation that will be useful in our discussion.

The following two functions report in how many places (f(a®), f(a'),..., f(a™™')) agree and disagree

with (8o, 81y, Bn-1).
K(f,B) =i flou) =Bi}| (4.30)

D(f,8) = i: fles) # Bi}| =n - K(f,5) (4.31)

We use the number C(n,m) as the upper range of the two-variable polynomial we will construct and in

a couple other definitions.

C(n,m) = n(m + 1) = ot) (4.32)
2 2
We also define the following three useful numbers:
Kn(n k) = min{K : A(mK,v) > C(n,m)} =1+ [ra(C)/m] (4.33)
tm(n k) =n— Kn(n,k) =n-1- |ra(C)fm| (4.34)
Ln(n, k) = maz{L: B(L,v) < C(n,m)} =rg(C). (4.35)

Using Theorem 4.4 and 4.5 we have the following bounds for the K, ty,, and L,,.

l vnm+1 iJJrlSKm‘_: MJ -1 (4.36)
m 2m m
1 1
n— \fvner Jétmgn—l— vnm+ —iJ (4.37)
m m 2m
2
n v+ 2 v+ 2 1, /n
/A 1 . S 4.38
\/vm(m+ }+(=) 5o J<(m+2)\/; (4.38)
The GS(m) Decoder. [12, 6-2] The GS(m) decoder constructs a nonzero two-variable polynomial of the
form
C(n,m)
Qa)= 3. ads(@y),
Jj=0

where ¢g < ¢ < ... is (1,v)-revlex monomial order, such that Q(z,y) has a zero of order m at each of the n
points (a;, B;), for i = 1,...,n (the Interpolation Theorem 4.10) guarantees that such a polynomial exists.)

The output of the algorithm is the list of y-roots of Q(z,y), i.e,

L={f(z) € Fla] : (y - f(x))|Q(z,y)}.

18

'\LT_‘.

Theorem 4.16. [12, 6-2] The oulput list, L contains every polynomial of degree < v such that K(f,8) > K.
Furthermore, the number of polynomials in the list is at most Lp,.

Proof. By (4.14) deg, , Q(x,y) < max{deg, , ¢i(z,y) :i =0,...,C} = r4(C). Hence by Theorem 4.12, any
polynomial f(z) of degree < v such that mK(f,3) > ra(C), will be a y-root of Q(z,y). In other words, if
K(f,B) 2 1+ |ra(C)/m]| = Ky, f(z) will be on the list.

On the other hand, by (4.15), the y-degree of Q(z,y) is < rg(C(n,m)) = Ly,. Since the number of y-roots
of Q(x,y) cannot exceed its y-degree it follows that the output list contains at most L, polynomials. O

As we can see, il < ¢, errors occur in transmission then the G.S(m) decoder should include the correct
word in the list £ that it returns. The list £ shouldn’t be too large, having length at most L,,, which does
increase directly with m. Although as m increases we can decode more errors, we must also perform more
computation since the size of the two variable polynomial must increase, and so there is a practical limit on

how many errors we might decode with the algorithm.

4.7 Decoding Algorithm

Let us pull together the previous results. Following is a more exhaustive and detailed statement of the
algorithm and how it fits together. We are given n, k, and a field Fy and a multiplicity m. The decoder
receives the input: 8= (0o, B1,- Frn-1) € Fg. We decode as follows.

1. We build a two-variable polynomial @(z,y) with zeros of multiplicity m(a, #) = m (constant given
above) at the points (a°, o), (@, B1),..., (@1, B,_1); at every other point, m(a,) = 0. By increasing
the multiplicity at each of the given points the function @Q(x,y) we increase the number of errors that
can be corrected. As mentioned before, the notion of multiplicity forces the function @ to pass through

the given point more times, or have a singularity, at that point.

The Interpolation Theorem indicates how to build the function Q(z,y).

c

Qz,y) =Y aid(z,y)

i=0

!

and where ¢(z,y) is the (1, %k — 1)-revlex monomial ordering.

where

We now have the basic structure of the polynomial but not the coefficients. By Theorem 4.9 we know
that our function @Q(z,y) will have multiplicities at the above points if and only if:

Qrs(a, 8) = Z (;) (i)ai_j:ci’ryj’s =0 Vr,ss.t. 0<r+s<m.

4,

19

5

Clearly there are (m;l) equations defined by each point and there are n points for a total of ¢ = n(m;'l)

equations. Since we have ¢ independent equations and ¢+ 1 unknowns (the coefficients) and the system
is homogeneous, there is at least one non-trivial solution to this system of equations. And so we can

find the coefficients of our function Q(z,y) corresponding to each monomial.

. Now, we take the polynomials f(x) € F4[z] with degree less than k and find their @Q-score. If less

than t,, errors have occurred, then one of these polynomials represents the original data that was sent.
The @Q-score gives the number of points at which the function f(x) agrees with the one with which we
interpolated to attain Q(z,y).

We will compare the Q-Score of each polynomial f(z) to the (1, v)-weight of Q(z,y): deg; , Q(z,y) =
deg; , dc(w,y) = deg; , zly? = I+vJ. For each f(z) € Fy[z] with degree less than k, if Sg(f) > I+v/J,
then we add f(z) to the list L.

By Theorem 4.16, if fewer than t,, errors have occurred then the list £ is guaranteed to include the

original word that was sent and few, if any, others. The algorithm returns £ as its result.

Conclusion

The original Guruswami-Sudan algorithm was designed to decode as many errors as possible and was not
optimized to reduce computing complexity, although it is proven to be polynomial time (see [11]). K&tter
[13] and Roth and Ruckenstein [14] have taken the theory further in the area of computing complexity,
significantly reducing the amount of computing time and space required to perform the calculations. Research

is still continuing in this area, although perhaps the most inspired discoveries have already been made.

The two pairs of researchers on whose work this paper is primarily based, Reed and Solomon and Gu-

ruswami and Sudan, have had an enormous impact on the the field of coding theory. Both pairs possessed a
unique ability to see crucial connections between the problem at hand and another already established area

of mathematics, demonstrating a pragmatic and creative flare for problem-solving. In particular, Guruswami

and Sudan’s discovery should give aspiring mathematicians hope that even after a particular area appears

to have been exhausted, significant discoveries can yet be made.

20

A Example

We will work though a complete example from start to finish over the very simple (3, 2,2) RS code described
in Section 3. Since n = ¢ — 1, we will be working over the field F4. The code is not guaranteed to decode
any errors, since the conventional error-correction bound is [95—1 | = 0. However, we will find that if 1 error
occurs we can narrow down the result to a list of three codewords. The multiplicity, m, is used throughout

the decoding algorithm; for our example we will set m = 2.

A.1 Definitions

The first step is to find the monomial ordering that we will be using. Since v = k — 1 = 1, we will use
(1, 1)-reviez:
1<$<y<x2<$y<y2<$3<$2y<wy2<y3<...

By Theorem 4.2, we can find the sequences r4 and rg:
ra=D(1,1)=1{0,1,1,2,2,2,3,3,3,3, ...},
rp = D(0,1) ={0,0,1,0,1,2,0,1,2,3, ..}.

In Section 4.6 we introduce the following values:

C(n,m) :n(m; 1) —9

tm(n,K) = n— 1~ |ra(C)/m] =2~ [ra(9)/2] =2~ [3/2] =1
L = r5(C) = ra(9) = 3

A.2 Encoding and Transmission

We will be encoding vectors of the form (g, ;) € F2 giving us 16 possible words and so each can correspond
with a hexadecimal digit. Consider that we want to send the hexadecimal digit 0z7. In binary, we have
060111, and so we encode the vector (1,a?). The encoding map in the Section 3 indicates that (1,a?)
(a,0,a?). This can be established by representing (1,a?) as a polynomial f(z) = 1 + (a?)z and evaluating
it at the non-zero elements of Fy: (f(a®), f(a), f(a?)) = (,0,a?).

To simulate transmitting the encoded word across a noisy channel we will modify the second component

of the.vector, yielding r = (o, 1, 0?).

A.3 Decoding

We receive the word r = (o, 1,a?). We will closely follow the steps indicated in Section 4.7 to determine a
list of possible words. We must build the polynomial Q(z,y) by interpolating at the points (1, fy), (e, 81),

21

=4

and (a2, ;) where r = {8y, 81, 52). Each point corresponds to a non-zero element in Fy. In our case the
points are: {(1,a), (a,1), (a?,a?)}. Our goal is to find all polynomials of degree less that & such that when
they are evaluated at the non-zero elements of Fy the result ‘closely matches’ our received vector r. To do
this we build the polynomial Q(z,y) so that it has a zero of multiplicity m = 2 at each of the interpolating

points. We can write the polynomial Q{z, y) as

C(n,m)

Qzy) = Y adi(a,y)

i=0

=ag + a1x + asy + a3m2 + a4ry + a5y2 + a5z3 + a7:.v:2y + agmyz + agy3

Each monomial ¢; is the ith monomial in the (1,1)-revlez ordering listed above. We must find the
coeflicients. Theorem 4.9 states that Q(z,y) has a zero of multiplicity m at each of these interpolating

points if the following is satisfied:

Qrs(a, B) = Z (1) (i) a-i,j:ci_ryj_s =0 Vr,ss.t. 0<r+s <mla,f) Ya,8 € Fy

i U
4,7

Where (4,7) € {(I,J) : 0 < Ind(z!,y’) < C(n,m) = 9}.

Since m(a, 8) = 0 for every point except the interpolating points, we will use just those interpolating
points. At each of those three points, there are three choices for » and s: {(0,0),(1,0),(0,1)} yielding a
total of nine equations: Qgo(l,a) = 0, Qoo(a,1) = 0, Qoofa?,a?) =0, Qo1(1,a) = 0, Qo,1(a,1) = 0,
Qoi(a?,a?) =0, Q1o(l,a) = 0, Qiol(a,1) = 0, @10(a®,a®) = 0. The following matrix represents the
equations, with each column corresponding to a coefficient, and each row corresponding to one of the previous

equations.

(1 1 a 1 a a* 1 a o> 1 0]
1l « 1 &> a 1 1 o a 1 0
1 a2 &2 o a «a 1 1 1 1 0
00 L 0 1 0 0 1 0 «* o0
00 1 0 a 0 0 o> 0 L 0
00 1 0 > 0 0 o 0 a 0
01 0 0 a« 0 1 0 > 0 0
01 0 0 1 0 «* 0 1 0 0

01 0 0 & 0 0, & 0 0]

22

i

In reduced echelon form, we have:

1000000O0O0 1 0
01 0000O0O0O0 0 O
001000000 0 0
000100000 0 0
000010000 a0
000001000 0 O
000000100 1 0
000000O0T10 0 O
0 0000O0O0O0T1 0 O]

We have one free coeflicient, ag. Since this is a homogeneous system we have a trivial solution (let ag = 0)
and nontrivial solutions for ag = 1,ay = @, ag = a?. We will let ag = a. This yields the following values for

the coeflicients:
[@,0,0,0,1,0,c,0,0,]

So we can write Q(z,y) as:
Qz,y) = (a) + zy + (@)a® + (@)y®

Having built @(z,y), we will find a list of possible sent words: they are the polynomials f(x) such that
y — f(z) is a factor of Q(z,y). The Factorization Theorem states that such polynomials will have a (-score
> deg11Q(x,y) = 3. We take each vector in F and find the Q-score of the corresponding polynomial. If
So(f) > 3, we add the vector to our list £. Remember that the max size of the list is Ly, = 3.

elements € F? f(z) Sq(f)
(0,0) 0 0
(0, @) oz 2
(0,a?) o’z 2
(0,1) x 2
(,0) o 2
(o, @) a+ ax 4
(o, @?) a+o? 0
(a,1) a+1 0
(a?,0) o? 2
(a?,a) a?+az 0
(a?,a?) a? + o’y 0
(a?,1) a’+z 4
(1,0) 1 2
(1,a) 1+ az 0
(1,02) 1+a’x 4
{1,1) 1+z 0

23

h

—4

So our decoder will return the following list of vectors:

£ = {(e,a), (o 1), (1,0%)}

As you can see the word that we sent, (1,a?) is in the list, demonstrating the error-correcting capability
of the code. Remember that in this case, we are using a code that conventionally cannot correct any errors.
In larger codes the results can be much better than this — yielding exactly the word that was sent.

A.4 SAGE Code

Following is some code that can be used in SAGE, an open source computer algebra system, to compute
some of the more tedious parts of the example in the previous section. In particular, building and solving the
system of equations needed to find the coefficients of Q(z,y) can expedited in this manner. Also included is

the output of the code.

sage:
sage:
sage:
sage:
sage:
sage:
sage:
sage:
sage:

sage:

sage:
sage:

sage:

sage:
sage:
sage:
sage:
sage:
sage:
sage:
sage:
sage:
sage:
sage:
sage:

settings

=4

=3

=2

=2

=k -1 # this will be used in t he 1-v degrees.
= n * binomial(m+1, 2)

(1,v]

degrees =

£ 0 < ®x 8 B .0 =

for i in range{(m+q)**2):
for j in range((m+q)**2):
if not degrees.has_key(i*w[0] + j*w[1])
degrees [i*w[0] + j*w[1]1] = []
degrees[i*w[0] + j*w[1]].append([i,j])

#print degrees
monomial_order_1iv = []
for deg in degrees.itervalues():
for pair in sorted(deg,key=operator.itemgetter(1)):

monomial_order_1v.append{pair)

#print monomial_ order_1iv

#estimates:

#number of max errors to decode

we can write the r_A(j) as this (see pg. 12)

monomial_order_1v[j][0]*1 + monomial_order_1iv[j][1]*v
we can write the r_B(j) as this (see pg. 12)

monomial_order_01[j] [0]*1 + monomial_order_01(j][1]1*v
t.m=n - 1 - floor((monomial_order_1iv[c] [0]*1 + monomial_order_1iv[c](1]l*v) /m }; t_m # see pg 18
print "t_m, (max number of errors we are able to decode): ", t.m

t_m_lower = n - floor(sqrt(v¥n*{m+1)/m))

t_m_upper = n - 1 - floor({ sqrt{ v#n*(m+1)/m - v/ 2%m))

print float(t_m_lower)," <= t_m <= ", float (t_m_upper)

24

sage: print

sage: L_m = monomial_order_01(c] [0]*1 + monomial_order_01[c] [1]*v; L_m

sage: print "L_m (max number of codewords in the list that’s returned)" #:", L.m
sage: L_m = int(floor(sqrt{ (n*m*(m+1)/v) + ((v+2)/(2%v))**2) - (v+2)/(2#v} D)}
sage: L_m_upper = float((m + .5)) * float(sqrt(n/v})

sage: print "L.m =", L.m , " <", L_.m_upper

t_m, (max number of errors we are able to decode): 1

1.0 <=t_m<= 1.0

L.m (max number of codewords in the list that’s returned)

L.m= 3 < 4.33012701892

sage: F = GF(q,’b’); F # this puts the polynomial in terms of 'b’
Finite Field in b of size 272

sage: a = F.gen();a

b
sage: data = vector(F,k,[1,a**2)); data
(1, b + 1)

sage: data_encoded = vector(F,n,[data[0]*1 + data[1]*1, data[0] + data[l]*a, data[0) + data[1]*a**2]); data_encoded
(b, 0, b+ 1)
sage: # the error will simulate transmitting over a noisy channel.

sage: error = vector(F,n,[0,1, 0]); error;

(o, 1, 0)
sage: data_received = vector(F,n); data_received = data_encoded + error; data_received;
(b, 1, b + 1)

sage: # now build the function Q(x,y)
sage: # first, we'’ll use the following points to interpolate at.
sage: # for a received word (beta_0, beta_l, beta_2), the points are (1,beta_0), (a, beta_1), and (ax*2, beta_2).
sage: interpolating_points = [vector(F,2,[1, data_received[0] 1), vector(F,2,(a, data_received[1]]},
vector(F,2, [a*x*2,data_received[2]])]
sage: interpolating_points
[(1, v), (b, 1), (b +1, b+ 1)]
sage: # to build Q(x,y), we need to find the coefficients of the monomials. We know that they must satisfy the
following equations:
sage: # Q_r,s{alpha,beta) = 0 for 0 <= r+s < m. (Q_r,s is defined in the thesis.)
sage: # withm = 2,
sage: rs = []
sage: for r in range(m):
for s in range{(m):
if (r+s < m):

rs.append([r,s])

sage . IS

(fo, 01, fo, 11, [1, 011
sage: #so0 we will have a set of equations. each polynomial will.be represented by a vector over F, we will then put

these together into a matrix and solve the system. each component of the vector corresponds with a particular coefficient.

sage: # what we’re trying to find, there are n¥binomial(m+1,2)+1 coefficients (from 0 to ¢ = n*binomial(m+1,2)).

sage: coefficients = vector(F,n*binomial(m+1,2)+1)

sage: # coefficients.degree() -- number of coefficients.
sage: # get a mapping from monomial index to the exponent powers. we need this to build the polynomial Q(x,y)
sage: w = [1,1]

sage: degrees = {}

sage: for i in range((m+q)*¥2):

25

€W

for j in range((m+q)**2):
if not degrees.has_key(i*w[0] + jxw[1])
degrees [i*w[0] + j*xw(1]] = []
degrees[i*uw[0] + j*w([1]].append((i,jl}

sage: #print degrees
sage: ij = []
sage: for deg in degrees.itervalues():
for pair in sorted(deg,key=operator.itemgetter(1l)):

ij.append(pair)

sage: #print ij
sage: # build the matrix, there’s a row for each equation, and a column for each coefficient.
sage: matrix_to_solve = matrix(F,n*binomial(m+1,2), n*binomial (m+1,2)+1 };
sage: eq = 0
sage: for rs_pair in rs:
for point in interpolating_points:
for ¢ in range(coefficients.degree()):

i = ijlc][0]

jo=ijlcl1]

r = rs_pair[0]

s = rs_pair[i]

alpha = point[0]
beta = point[1]

let 0°0 = 1 in the finite field:
#print alpha, beta, i, j, r, s
#print binomial{(j,s), binomial{i,r)
if (binomial(i,r) == 0 or binomial{(j,s)==0):
#print "binomail is 0"
val = 0
elif (alpha==0 and (i-r) == 0 and beta==0 and j-s == 0):
#print "exceptionl"
val = binomial(i,r) *binomial(j,s)
elif (alpha==0Q and i-r == 0):
#print "exception2"
val = binomial{i,r) *binomial(j,s) * (beta)**(j-s)
elif (beta==0 and j-s == 0):
#print "exception3"

val = binomial(i,r) #*binomial(j,s) * (alpha)**(i-r)
else:

val = binomial(i,r) *binomial(j,s) * (alpha)**(i-r) * (beta)**(j-s)
#print val

#print (alpha)**(i-r) * (beta)**(j-s)
#print eq,c
matrix_to_solveleq,c] = val

eq = eq + 1

sage: print matrix_to_solve

[1 1 b 1 bb+1 1 bb+1 1]
[1 b 1b+1 b 1 1b+1 b 1]
[1b+1b+1 b b b 1 1 1 1]

26

sage!:

sage:

L I e T e T T T T R e S

sage:
sage:
sage:

sage:

sage:

c o 0o o o o

O O C O O O O =

0 1 [¢] 1 0 0 1 0b + 1]
0 1 0 b 0 0b+1 0 1]
0 | 0b+1 0 0 b 0 b]
1 0 0 b 0 1 Ob+1 0]
1 0 0 i 0b+1 0 1 0]
1 0 0b+1 0 b 0 b 0]

Now, let’s solve the matrix.
matrix_solved = matrix_to_solve.echelon_form(); matrix_solved

0 (] 0 0 0 0 0 0 1]
1 0 0 0 0 0 0 0]
0 i 0 0 0 0 0 0 0]
0 0 1 0 0 0 0 0 0]
0 0 0 1 0 0 0 0b+ 1]
0 0 0 0 1 0 0 0 0]
(0] 0 0 0 0 1 0 0 1]
0 0 0 0 0 0 i 0 0]
0 0 0 [¢] 0 [¢] 0 1 0]

#now put together the values of the Q(x,y) polynomial
#let a_9 be something, then define the rest of the coefficients in terms of it.
coefficients[coefficients.degree()-1] = a;
for ¢ in range(coefficients.degree()-1):
coefficients(c) = matrix_solved[c,coefficients.degree()-1]*coefficients[coefficients.degree()-1]

coefficients

(b, 0,0, 0,1, 0, b, 0,0, b)
sage: # find the deg_1,1 of Q(x,y)
sage: # the degree of a polynomial is the highest non-zero, so start at the end of coefficients, until you find a

non-zero coefficient, then find the

sage:
sage:

Sage:

sage:

sage:
sage:
sage:
sage:
sage:

degree of the polynomial corresponding with that coefficient -- see the ij list.
ind_Q_xy = coefficients.degree()-1
while coefficients[ind_Q_xy] ==

ind_Q_xy = ind_Q_xy -1

deg_Q_xy = ij[ind_Q_xy] [0]*w[0] + ij(ind_Q_xy] (1)*w[1]; deg_Q_xy

#find the g-score of each of the possible input vectors (over F_q"k). if > deg_1,1 of Q(x,y), then add to our list.
print interpolating_points
#output list for collecting plausible codewords.
L=10
for i in F:
for j in F:

this gives us each possible input vector in F_q"k

q_score_f = vector(F,2,[i,jl}; q_score_f

we must now figure out the gq-score for this vector.

q.score = 0

to find the g-score of the word / poly f, we need to evaluate the poly at the field elements

this will give us q points of the form (0, £(0)), (a**0, f(axx0)), ..., (a**(q-1), f(a*x(a-1)))

if this point is in the interpolating points, then it has a score of m, otherwise one of zero, we add

up these q-scores to get the total g-score for the poly f.

for el in F:
q_score_point = vector(F,2,[el, q_score_f[0] + g_score_f[1]¥el])

for pt in interpolating_points:

27

if pt == g_score_point:
q_score = q_score + m
we now have a g-score for this poly / word f.
print q_score_f
print gq_score
we know that if the q-score of a poly is greater that deg_1,1 of Q(x,y), then it is y- f(x) is a factor of
Q(x,y) and so this f is a plausible codeword. if this is true, we add it to our output list, L
if g_score > deg_Q_xy:
s L.append(q_score_f)
[(1,), (b, 1), (P +1, b+ 1)]
(0, ®
0
0, b)
2
(0, b+ 1)

(0, 1)
(b, 0}
(b, b)
(b, b + 1)
(b, 1)

(b + 1, 0)

2

(b +1, b)

0

(b+1, b+ 1)

0

b+1, 1)

4

(1, 0)

2

(1, b)

0

(1, b+ 1)

4

1, v

0

sage: print "The sent word is one of:", L
The sent word is one of: [(b, b), (b + 1, 1), (1, b + 1)]

-

h

—4

28

C

References

[1] C. E. SHANNON, Bell System Technical Journal 27 (1948).

2] B. A. CIPRA, SIAM News 26 (1993).

[3] R. J. McELIECE, Scientific America 252, 88 (1985).

[4] 1. REED and G. SoLOMON, SIAM Journal on Applied Math 8, 300 (1960).

[5] J. A. GALLIAN, Contemporary Abstract Algebra, Houghton Mifflin Co., New York, 5th edition, 2002.
[6] V. PLESS, Introduction to the Theory of Error-Correcting Codes, Wiley, New York, 2 edition, 1989.

[7) M. Supan, 6.897 Algorithmic Introduction to Coding Theory - Lecture 4, Lecture notes from a class
at MIT, 2002.

8] M. E. O’SuLLIvAN, Math 696 - Coding Theory, Lecture Notes from a class at San Diego State
University, 2006.

[9] D. FORNEY, 6.451 Principles of Digital Communication II - Chapter 8, Lecture notes from a class at
MIT, available at http://ocw.mit.edu, 2005.

[10] M. SupaN, Journal of Complezity 13, 180 (1997).

[11] V. GuruswaMI and M. SUDAN, Improved Decoding of Reed-Solomon and Algebraic-Geometric Codes,
in IEEE Symposium on Foundations of Computer Science, pp. 28-39, 1998.

[12] R. J. McELIECE, The Guruswami-Sudan Decoding Algorithm for Reed-Solomon Codes, A tutorial

discussion, 2003.
[13] R. KOTTER and A. VARDY, Algebraic soft-decision decoding of Reed-Solomon codes, 2000.
(14] R. RoTH and G. RUCKENSTEIN, [EFEE Transactions on Information Theory 46, 246 (2000).

[15] J. vAN LINT, Introduction to Coding Theory, Springer, third edition, 1999,

29

