Computer Science

The study of computer science involves becoming a top-notch problem solver. The solutions computer scientists focus on are processes for solving problems. These processes are expressed using the language of algorithms. Ultimately, the solution is programmed into a computer.

Because of their flexibility, computers are integral to most research and are indispensable in most professional careers. In education they are used for instruction, for learning, and for efficiency. In industry they are revolutionizing businesses, and in science they allow us to simulate a Jupiter fly-by, to design the next generation air-bus, and to investigate the effects of pollutants on the environment.

Computer Science majors learn to look at complex situations, identify patterns, and develop processes that take advantage of those patterns in order to solve a problem or improve an approach to a problem. Computer Science majors learn how to solve problems from a wide variety of domains. Working in teams, students learn to transform their solutions into algorithms and implement programs for a broad range of software systems. Majors in Computer Information Systems, a program offered jointly with Business Administration, study problem solving and software development for automating business processes.

Programs

- Computer Information Systems, B.S. major
- Computer Science, B.S. (Integrated Emphasis) major
- Computer Science, B.S. (Professional Emphasis) major
- Computer Science minor

Career Directions

Computer Science
- 3D Graphics Programmer
- Analyst
- Application Developer
- Artificial Intelligence Engineer
- Automation Engineer
- Consultant
- Design Engineer
- Documentation Tools Specialist
- Game Programmer
- Interface Designer
- Issue Associate
- IT Development Program Associate
- Patent Examiner
- Quantum Computing Researcher
- Research Assistant
- Software Developer
- Software Engineer
- Usability Consultant
- User Interface Coordinator
- Web Developer
- Web Experience Developer

Also: Graduate Study

Computer Information Systems
- Application Programmer
- Business Consultant
- Business Development Associate

- Computer Operations Manager
- Database Administrator
- Finance Analyst
- Information Center Specialist
- Programmer/Analyst
- Software Engineer
- Systems Analyst

Also: Graduate Study

Preparation

Recommended High School Courses

- Algebra
- Geometry
- Trigonometry
- Calculus
- Computer Science
- Physical Sciences
- Public Speaking
- Interpersonal Communication
Computer Information Systems, B.S. major

Required Credits: 77
Required GPA: 2.25

I REQUIRED COMPUTER INFORMATION SYSTEMS CORE

COMPLETE THE FOLLOWING COURSES:

- BUAD 2280 Computer Business Applications (3 credits)
- BUAD 2381 Structured Application Development (3 credits)
- BUAD 3381 Management Information Systems (3 credits)
- BUAD 3382 Advanced Application System Development (3 credits)
- BUAD 3384 Systems Analysis and Design (3 credits)
- BUAD 4385 Data Modeling and Design (3 credits)
- BUAD 4387 Corporate Information Management (3 credits)
- CS 1309 Problem Solving and Computer Science (4 credits)
- CS 2321 Computer Science I (4 credits)
- CS 2322 Computer Science II (4 credits)

II ADVANCED CIS PROJECT

SELECT 1 (min of 3 credits) OF THE FOLLOWING ADVANCED CIS PROJECTS (CONSULT ADVISOR):

- BUAD 4386 Applied Software Development Project (3 credits)
- BUAD 4910 Directed Independent Study (3 credits)
- CS 4910 Directed Independent Study (3 credits)
- BUAD 4970 Internship (1-12 credits)
- CS 4970 Internship (3 credits)

III ADDITIONAL REQUIRED COURSES

COMPLETE THE FOLLOWING COURSES:

- ACCT 1101 Principles of Accounting I (3 credits)
- ACCT 1102 Principles of Accounting II (3 credits)
- BUAD 3223 Operations Management (3 credits)
- BUAD 3351 Management (3 credits)
- BUAD 3361 Marketing (3 credits)
- BUAD 3771 Financial Management (3 credits)
- ECON 2000 Markets and Resource Allocation (3 credits)
- ECON 2100 Macroeconomics and the Business Cycle (3 credits)
- MATH 2471 Calculus I (5 credits)

SELECT 1 OF THE FOLLOWING COURSES:

- BUAD 2231 Business Statistics I (3 credits)
 or STAT 2610 Applied Statistics (4 credits)

IV ELECTIVES

SELECT 9 SEMESTER CREDITS FROM A AND B. AT LEAST 2 COURSES MUST BE FROM GROUP A:

A.

- BUAD 3281 Decision Support Systems (3 credits)
- BUAD 3283 E-Commerce Web Development (3 credits)
- BUAD 3383 Data Communications (3 credits)
- CS 3350 Event-Driven Programming in a Windows Environment (3 credits)
- CS 3360 Object-Oriented Software Development (3 credits)
- CS 3528 Data Structures and Algorithms (3 credits)
- CS 3718 Computer Graphics (3 credits)
- CS 4280 Programming Language Structures (3 credits)
- CS 4361 Software Engineering I (3 credits)
- CS 4362 Software Engineering II (3 credits)

B.

- BUAD 3232 Business Statistics II (3 credits)
- BUAD 3520 Business Ethics (3 credits)
- CS 3507 File Processing and Database Systems (3 credits)
- CS 3610 Introduction to Operations Research (3 credits)
- MATH3210

SUGGESTED SEMESTER SCHEDULE FOR CIS MAJOR, B.S.

The following is a list of required CIS courses arranged by year. This schedule is intended to help students plan their courses in an orderly fashion; however, these are only suggestions.

Freshman

- BUAD 2280 Computer Business Applications (3 credits)
- College Writing courses
- Science or Mathematics
- Liberal Education courses

Sophomore

- ACCT 1101 Principles of Accounting I (3 credits)
- ACCT 1102 Principles of Accounting II (3 credits)
- BUAD 2231 Business Statistics I (3 credits)
- or STAT 2610 Applied Statistics (4 credits)
- BUAD 3223 Operations Management (3 credits)
- BUAD 3381 Management Information Systems (3 credits)
- CS 1309 Problem Solving and Computer Science (4 credits)
- ECON 2000 Markets and Resource Allocation (3 credits)
- ECON 2100 Macroeconomics and the Business Cycle (3 credits)
- Science or Mathematics
- Liberal Education courses

Junior

- BUAD 2381 Structured Application Development (3 credits)
- BUAD 3351 Management (3 credits)
- BUAD 3361 Marketing (3 credits)
- BUAD 3382 Advanced Application System Development (3 credits)
- BUAD 3771 Financial Management (3 credits)
- CS 2321 Computer Science I (4 credits)
- CS 2322 Computer Science II (4 credits)
- Computer Information Systems electives

Senior

- BUAD 3384 Systems Analysis and Design (3 credits)
- BUAD 4385 Data Modeling and Design (3 credits)
- BUAD 4386 Applied Software Development Project (3 credits)
- BUAD 4387 Corporate Information Management (3 credits)
- Computer Information Systems electives
- Liberal Education courses

Computer Science, B.S. major

Integrated Emphasis

Students cannot take 4000-level Computer Science courses until they have completed Calculus I and have earned a minimum grade point average of 2.25 in the required computer science courses they have completed.
I REQUIRED CORE COURSES

COMPLETE THE FOLLOWING COURSES:

- CS 1309 Problem Solving and Computer Science (4 credits)
- CS 2321 Computer Science I (4 credits)
- CS 2322 Computer Science II (4 credits)
- CS 2810 Computer Organization and Assembly Language Programming (3 credits)
- CS 3528 Data Structures and Algorithms (3 credits)
- CS 4390 Social, Ethical, and Professional Issues in Computing (2 credits)

INTEGRATED EMPHASIS

1. Systems Studies

SELECT 2 OF THE FOLLOWING COURSES:

- CS 2260 Linux Systems Programming (3 credits)
- CS 3507 File Processing and Database Systems (3 credits)
- CS 3560 Data Communications and Networks (3 credits)

2. Application Development Techniques

SELECT 2 OF THE FOLLOWING COURSES:

- CS 3350 Event-Driven Programming in a Windows Environment (3 credits)
- CS 3360 Object-Oriented Software Development (3 credits)
- CS 4361 Software Engineering I (3 credits)

3. Required Electives

SELECT 3 SEMESTER CREDITS FROM COMPUTER SCIENCE COURSES AT THE 3000 AND/OR 4000 LEVELS. Internship credits cannot be applied to this elective requirement.

4. Required Outside Courses

COMPLETE THE FOLLOWING COURSES:

- ENGL 3179 Elements of Electronic Rhetoric (3 credits)
- MATH 2471 Calculus I (5 credits)
- MATH3210
- SPCM 1100 Public Speaking (3 credits)

SELECT 1 OF THE FOLLOWING COURSES:

- ENGL 2150 Technical Writing (3 credits)
- ENGL 3150 Writing In The Disciplines (3 credits)

5. Required Minor or Second Major

Students pursuing this emphasis are required to complete the requirements of either a minor (other than Computer Science) or second major (other than Computer Science, Professional Emphasis). This minor or major should represent an area of interest to the student and be chosen in consultation with the student's advisor.

Students who are not ready for Calculus will normally begin their mathematics course work in MATH 1470 Precalculus. Some students may need to successfully complete several mathematics courses before taking MATH 2471 Calculus I.

Computer Science, B.S. major

Professional Emphasis

Students cannot take 4000-level Computer Science courses until they have completed Calculus I and have earned a minimum grade point average of 2.25 in the required computer science courses they have completed.

Required Credits: 59
Required GPA: 2.25

I REQUIRED CORE COURSES

COMPLETE THE FOLLOWING COURSES:

- CS 1309 Problem Solving and Computer Science (4 credits)
- CS 2321 Computer Science I (4 credits)
- CS 2322 Computer Science II (4 credits)
- CS 2810 Computer Organization and Assembly Language Programming (3 credits)
- CS 3528 Data Structures and Algorithms (3 credits)
- CS 4390 Social, Ethical, and Professional Issues in Computing (2 credits)

PROFESSIONAL EMPHASIS

1. Required Computer Science Courses

COMPLETE THE FOLLOWING COURSE:

- CS 4361 Software Engineering I (3 credits)

SELECT 2 OF THE FOLLOWING COURSES:

- CS 3627 Theory of Computation (3 credits)
- CS 4298 Compiler Construction (3 credits)
- CS 4362 Software Engineering II (3 credits)
- CS 4840 Operating Systems (3 credits)

2. Required Mathematics Courses

COMPLETE THE FOLLOWING COURSES:

- MATH 2210 Discrete Mathematics (4 credits)
- MATH 2471 Calculus I (5 credits)
- MATH 2472 Calculus II (5 credits)

SELECT 1 OF THE FOLLOWING COURSES:

- MATH 3310 Linear Algebra (4 credits)
- STAT 3631 Probability And Statistics I (4 credits)

3. Required Electives

SELECT 12 SEMESTER CREDITS FROM COMPUTER SCIENCE COURSES AT THE 3000 AND/OR 4000 LEVELS. A maximum of 3 internship credits can be applied to this elective requirement.

Students who are not ready for Calculus will normally begin their mathematics course work in MATH 1470 Precalculus. Some students may need to successfully complete several mathematics courses before taking MATH 2471 Calculus I.
The Bachelor of Science minor in Computer Science is designed to provide students with the opportunity to obtain a background in computer science that will enhance their major areas of study and increase their employability.

Required Credits: 16-21
Required GPA: 2.00

I REQUIRED COURSES

COMPLETE THE FOLLOWING COURSE:

- CS 1309 Problem Solving and Computer Science (4 credits)

II REQUIRED EMPHASIS-PROFESSIONAL EMPHASIS

COMPLETE THE FOLLOWING COURSES:

- CS 2270 Introduction to Web Programming (3 credits)
- CS 2321 Computer Science I (4 credits)
- CS 2322 Computer Science II (4 credits)
- CS 2810 Computer Organization and Assembly Language Programming (3 credits)
- CS 3270 Advanced Web Programming (3 credits)
- CS 4390 Social, Ethical, and Professional Issues in Computing (2 credits)
- ENGL 3179 Elements of Electronic Rhetoric (3 credits)
- IT 3520 Multimedia Processes I (4 credits)

SELECT 9 SEMESTER CREDITS FROM THE FOLLOWING COURSES:

CS 2260, CS 2810, MATH 3210, PHYS 2500 AND COMPUTER SCIENCE COURSES AT THE 3000 AND 4000 LEVELS

Computer Science Courses

CS 1107 Introduction to Computers (3 credits)

An examination of the development of computing devices, modern computing practices, components of a computing system, common application software, and uses of computers in society. No previous experience with computers is assumed. Note: This course is not intended for Computer Science majors or minors. Liberal Education Goal Area 9.

CS 1309 Problem Solving and Computer Science (4 credits)

Introduction to general problem-solving techniques applicable to solving problems in computing. Techniques include using systematic lists, using diagrams, and looking for patterns. Includes fundamental computer science concepts in information representation, computer organization, process application, and social and ethical issues in computing. The one-hour lab introduces the use of software to solve a variety of problems. The prospective student should have a general understanding of computers and their operation. Prerequisite: MATH 1100 and MATH 1170 or higher.

CS 2207 Computer Programming: BASIC (3 credits)

Fundamental concepts of computer programming using a modern version of the BASIC language. Prerequisites: MATH 1170 and CS 1107 or equivalent. Might not be offered every year.

CS 2260 Linux Systems Programming (3 credits)

Introduction to systems programming tools, including shell, awk, and perl programming. These tools are helpful in developing software in a Linux environment, doing system administration, and developing websites. No prior Linux experience assumed. Prerequisite: Programming experience at the level of CS 2207 or higher. (Might not be offered every year)

CS 2270 Introduction to Web Programming (3 credits)

This course expands on basic knowledge of markup languages and web programming languages. Students learn how to use current web markup languages, aspects of various transfer protocols, and client-side scripting languages. All of these topics support the development of both web pages and web sites. Prerequisite: CS 1309.

CS 2321 Computer Science I (4 credits)

Introduction to the basic principles of software development using a modern high-level language, including using selection, looping, function calls, and recursion, along with simple data structures such as arrays and objects, to solve problems. Includes an introduction to software engineering techniques such as interactive debugging, software testing, and methods of software validation. Includes a two-hour lab. Prerequisite: CS 1309 and MATH 1170 or MATH 1470 or higher.

CS 2322 Computer Science II (4 credits)

Topics include pointers, dynamic allocation, recursion, and structured data types such as objects, strings, lists, stacks, queues, templates, containers, binary trees, and hash tables. Also includes a group-oriented software design and implementation project. Includes a two-hour lab. Prerequisite: CS 2321.

CS 2810 Computer Organization and Assembly Language Programming (3 credits)

An introduction to the register level architecture of a modern computer and programming with an assembly language for that processor. Includes a two-hour lab. Prerequisite or Corequisite: CS 2322.

CS 3270 Advanced Web Programming (3 credits)

This course builds on topics from CS 2270. Students learn server-side scripting, database connectivity, and dynamic web-page updating. Web development frameworks are also studied. Prerequisite: CS 2270.

CS 3350 Event-Driven Programming in a Windows Environment (3 credits)

Uses a language suitable for creating event-driven programs while focusing on methodology suitable for developing event handlers in windows-oriented programs. Prerequisite: CS 2322 or equivalent.
CS 3360 Object-Oriented Software Development (3 credits)
Techniques used in object-oriented software development. Key components of these techniques include design patterns, abstraction, encapsulation, modularity, message passing, polymorphism, inheritance, and incremental software development. Students translate a design into software using an object-oriented programming language. Additional topics may include applets, markup languages, multi-threaded programming, and rudimentary network programming. Prerequisite: CS 2322 or equivalent. (May not be offered every year.)

CS 3507 File Processing and Database Systems (3 credits)
An examination and analysis of algorithms and file structures used by computer systems including sequential, direct (random) access, and keyed (indexed) files. Covers the creation, deletion, modification, and maintenance of files and their use in database systems. Prerequisite: CS 2322. May not be offered every year.

CS 3528 Data Structures and Algorithms (3 credits)
Study of advanced abstract information storage structures, including priority queues, binary trees, generalized trees, and graphs. Study of algorithm development techniques, including divide and conquer, greedy algorithms, and dynamic programming. Prerequisites: CS 2322 and MATH 2210 or consent of the instructor.

CS 3560 Data Communications and Networks (3 credits)
Principles of data communications as applied to modern computer networks. Prerequisite: CS 2810. May not be offered every year.

CS 3610 Introduction to Operations Research (3 credits)
A computer-oriented survey of linear programming, integer programming, dynamic programming, network analysis, queuing systems, inventory control, game theory, and discrete system simulation. Prerequisites: MATH 2472, and CS 2321. May not be offered every year.

CS 3627 Theory of Computation (3 credits)
Explores the theoretic roots and limits of computing. Prerequisites: CS 2322 and MATH 2210.

CS 3718 Computer Graphics (3 credits)
Fundamental concepts of computer graphics with emphasis on understanding underlying principles. Topics include line and curve drawing, windowing, clipping, shading, geometric transformations and 3-dimensional viewing. Prerequisites: CS 2322 and MATH 2471. May not be offered every year.

CS 4280 Programming Language Structures (3 credits)
Uses historical perspectives and several modern high level languages to examine principles and paradigms supported by programming languages. Prerequisites: CS 3528.

CS 4298 Compiler Construction (3 credits)
The theory, design, and construction of a compiler. Prerequisite: CS 3528. May not be offered every year.

CS 4361 Software Engineering I (3 credits)
Software Engineering (SE) I and II provide students a capstone experience that integrates the theory and practice of SE. SE I investigates a variety of SE models and guidelines used in industry. In the first part of a year-long project, students complete the requirements and specifications phases and reviews of SE and begin the formal design phase. Includes a two-hour lab. Prerequisites: CS 2810 and CS 3528.

CS 4362 Software Engineering II (3 credits)
A continuation of the capstone experience begun in SE I. SE II continues the year-long project, including design and implementation, with structured walkthroughs of all phases, and module, integration, and system testing. Includes a two-hour lab. Prerequisite: CS 4361.

CS 4390 Social, Ethical, and Professional Issues in Computing (2 credits)
Features topics related to standards for computing professionals. Prerequisites: At least one CS course numbered 3000 or higher. Might not be offered every year.

CS 4840 Operating Systems (3 credits)
Fundamentals of operating system design with emphasis on at least one modern operating system. Topics include scheduling, memory management, paging, file management, and mutual exclusion. Required work will include programming investigations. Prerequisites: CS 2810 and CS 3528.

CS 4910 Directed Independent Study (3 credits)
Arranged individual study.

CS 4970 Internship (3 credits)
Graded Satisfactory/Unsatisfactory only. Student internships may be either full-time or part-time in a public or private agency appropriate to the degree objective. Internships consist of closely supervised periods of service that are arranged in advance of the course registration. Students should consult their advisor concerning prerequisites.

All-University Courses

The course numbers listed below, not always included in the semester class schedule, may be registered for by consent of the advisor, instructor, or department chair, or may be assigned by the department when warranted. Individual registration requires previous arrangement by the student and the completion of any required form or planning outline as well as any prerequisites.

1970, 2970, 3970, 4970 INTERNSHIP
1980, 2980, 3980, 4980 RESEARCH
1990, 2990, 3990, 4990 THESIS

Computer Science | 5